People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holmes, Christopher
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Flexible photonics in carbon and glass fiber reinforced polymers for new multifunctionality: exploring the advances, challenges, and opportunitiescitations
- 2023Flexible Photonics in Carbon and Glass Fiber Reinforced Polymers for New Multifunctionalitycitations
- 2023Flexible Photonics in Carbon and Glass Fiber Reinforced Polymers for New Multifunctionality:Exploring the Advances, Challenges, and Opportunitiescitations
- 2022Design of microstructured flat optical fiber for multiaxial strain monitoring in composite materialscitations
- 2022New generation of embedded planar optics for in-situ, through-thickness and real-time strain measurements in carbon fiber reinforced polymer composites during the cure processcitations
- 2021Design of polarization-maintaining FBGs using polyimide films to improve strain-temperature sensing in CFRP laminatescitations
- 2020Identifying mechanical vibration modes of a cantilever using spectrally multiplexed Bragg gratings and machine learning
- 2020Structural health monitoring of composite laminate for aerospace applications via embedded panda fiber Bragg gratingcitations
- 2020Real-time through-thickness and in-plane strain measurement in Carbon Fibre Reinforced Polymer composites using planar optical Bragg gratingcitations
- 2018Direct UV written integrated waveguides using 213nm light
- 2015Optically integrated fiber: a new platform for harsh environmental sensing
- 2015Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer
- 2014Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometercitations
- 2013Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regimecitations
- 2013Polish-like facet preparation via dicing for silica integrated opticscitations
- 2013Facet machining of silica waveguides with nanoscale roughness without polishing or lapping
- 2010Micromachined multimode interference device in flat-fibercitations
- 2010Integrated optic glass microcantilevers with Bragg grating interrogationcitations
Places of action
Organizations | Location | People |
---|
article
Flexible Photonics in Carbon and Glass Fiber Reinforced Polymers for New Multifunctionality
Abstract
Flexible photonics, characterized by their planar design and integrated features, have surfaced as a promising technology to unlock new possibilities for multifunctionality within fiber reinforced polymer composite materials. A comprehensive review of current progress, challenges, and opportunities associated with flexible photonic integration into carbon and glass fiber reinforced polymers is provided. A systematic examination of the literature has revealed several flexible photonic technologies that have demonstrated potential for integration in composite components to monitor performance in manufacture, service, and reuse. The review highlights the advantages and limitations of the current state-of-the-art in flexible integrated photonics for making assessments of compatibility with carbon and glass fiber reinforced polymer structures. By examining proof-of-concept demonstrations, the improved performance and novel functionalities that can be achieved for industrial applications are identified. The challenges associated with the integration process, such as durability and scalability are discussed in the context of the manufacturing processes required to create composite components. The concept of integrating flexible photonics in composite structures is relatively new, hence the paper closes by highlighting opportunities for further research and development in this field.