People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouville, Florian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Embedded 3D printing of microstructured multi-material compositescitations
- 20233D-printing of ceramic filaments with ductile metallic corescitations
- 2022Embedded 3D printing of Multi-material composites
- 2022Fracture of hierarchical multi-layered bioinspired compositescitations
- 2021Transparent materials with stiff and tough hierarchical structurescitations
- 2021Tough bioinspired composites that self-report damagecitations
- 2020Transparent Nacre‐like Composites Toughened through Mineral Bridgescitations
- 2019Transparent and tough bulk composites inspired by nacrecitations
- 2019Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites
- 2018Iron-based particles for the magnetically-triggered crack healing of bituminous materialscitations
- 2018Reply to the correspondence:" On the fracture toughness of bioinspired ceramic materials"
- 2017Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-like Composite Materialscitations
- 2015Magnetically assisted slip casting of bioinspired heterogeneous compositescitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Lightweight and stiff cellular ceramic structures by ice templatingcitations
- 2014Strong, tough and stiff bioinspired ceramics from brittle constituentscitations
- 2014Templated Grain Growth in Macroporous Materialscitations
- 2013Self-assembly of anisotropic particles driven by ice growth : Mechanisms, applications and bioinspiration ; Auto-assemblage de particules anisotropes réalisé par croissance de cristaux de glace : Mécanismes, applications et bioinspiration
Places of action
Organizations | Location | People |
---|
article
Transparent materials with stiff and tough hierarchical structures
Abstract
Materials that are transparent in the visible spectrum are useful in applications that range broadly from displays in portable devices to large-area panels and windows used in the construction industry. The high strength and hardness of silica-based glasses make them most suitable choice in many of these applications. However, such properties come at the cost of the low fracture resistance and low damage tolerance of glasses, which result in brittle and unpredictable failure with potentially dangerous and harmful outcomes. Strong and fracture resistant transparent materials are therefore in high demand in several structural applications. Inspired by the hierarchical structure of biological composites, researchers have been able to fabricate synthetic materials that combine high strength and toughness. Nevertheless, reconciling these mechanical properties with optical transparency does not constitute a trivial task. In this review article, we describe and discuss some of the most promising biologically templated and biologically inspired composite materials that have been proposed to combine optical transparency, strength and fracture toughness. The replication of some of the hierarchical features of biological materials within their structure allows these composites to take advantage of synergistic toughening mechanisms that act at different length scales and provide high resistance against fracture. Understanding how they are fabricated and which mechanisms contribute to their toughness is key to draw guidelines for the synthesis of future transparent, strong and tough composites that are safer and more reliable than state-of-the-art silica-based glasses.