People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abram, Timothy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Development of high-temperature-steam Resistant UN via the addition of UB 2
- 2024Development of high-temperature-steam Resistant UN via the addition of UB2
- 2023Fabrication and thermal conductivity of UN-UB2 composites fabricated by spark plasma sinteringcitations
- 2022Development and Comparison of Field Assisted Sintering Techniques to Densify CeO2 Ceramicscitations
- 2020Steam Performance of UB2/U3Si2 Composite Fuel Pellets, Compared to U3Si2 Reference Behaviourcitations
- 2019A high density composite fuel with integrated burnable absorber: U3Si2-UB2citations
- 2018The use of gadolinium as a burnable poison within U 3 Si 2 fuel pelletscitations
- 2018The use of gadolinium as a burnable poison within U3Si2 fuel pelletscitations
- 2016Selective area laser deposition of FCC beta silicon carbide
- 2013The chemical durability of glass and graphite-glass composite doped with cesium oxidecitations
- 2012Thermal Analysis and Immobilisation of Spent Ion Exchange Resin in Borosilicate Glasscitations
- 2008Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
article
Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition
Abstract
Pyrolytic carbon was deposited on spherical particles using a multi-spout fluidized bed chemical vapor deposition reactor to fabricate TRISO fuel for the High Temperature Reactor (HTR). Modern techniques such as Raman spectroscopy and nanoindentation supported by porosimetry, scanning electron microscopy and transmission electron microscopy were employed to analyze the particle coatings directly. Raman spectroscopy and nanoindentation were given special attention due to their capacity to provide information on the internal structure of pyrolytic carbon and its mechanical properties without the necessity of complex sample preparation. The results obtained were used to study the relationship deposition conditions-microstructure-mechanical properties in more detail. Increasing the deposition temperature reduced the density and Young's modulus as porosity and in-plane disorder of carbon domains increased. There was also a change from a laminar microstructure of PyC to that containing more spherical particles. It appeared that anisotropy, domain size and level of graphitization (examined by Raman and TEM) had a strong influence on the mechanical properties. Clear differences were observed between acetylene and the acetylene/propylene mixture as precursor gases. © 2008 P. Xiao.