Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roberts, S. G.

  • Google
  • 8
  • 26
  • 1637

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2019Helical dislocations: Observation of vacancy defect bias of screw dislocations in neutron irradiated Fe–9Cr42citations
  • 2016Effect of the milling atmosphere on the microstructure and mechanical properties of a ODS Fe-14Cr model alloy16citations
  • 2015Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding68citations
  • 2013Recent progress in research on tungsten materials for nuclear fusion applications in Europe687citations
  • 2013Recent progress in research on tungsten materials for nuclear fusion applications in Europe687citations
  • 2008Residual stress distributions around indentations and scratches in polycrystalline Al2O3 and Al2O3/SiC nanocomposites measured using fluorescence probes37citations
  • 2002Modelling the initiation of cleavage fracture of ferritic steels33citations
  • 2001Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics67citations

Places of action

Chart of shared publication
Tarleton, E.
1 / 34 shared
Haley, J. C.
1 / 1 shared
Odette, G. R.
1 / 2 shared
Lozano-Perez, S.
1 / 81 shared
Cocks, A. C. F.
1 / 14 shared
Liu, Fengxian
1 / 2 shared
Castro Bernal, María Vanessa De
1 / 15 shared
Leguey Galán, Teresa
1 / 17 shared
Lozano Pérez, Sergio
1 / 7 shared
Bagot, P. A. J.
1 / 12 shared
Moody, M. P.
1 / 19 shared
Auger, María A.
1 / 16 shared
Armstrong, D. E. J.
3 / 9 shared
Rieth, Michael
1 / 58 shared
Britton, T. B.
1 / 4 shared
Hoffmann, J.
1 / 43 shared
Pintsuk, G.
3 / 29 shared
Weingärtner, Tobias
1 / 9 shared
Greuner, H.
3 / 19 shared
Gibson, J. S. K. L.
1 / 2 shared
Commin, L.
1 / 10 shared
Knabl, W.
1 / 8 shared
Antusch, S.
3 / 28 shared
Derby, Brian
2 / 45 shared
Wu, H. Z.
1 / 1 shared
Wu, H.
1 / 23 shared
Chart of publication period
2019
2016
2015
2013
2008
2002
2001

Co-Authors (by relevance)

  • Tarleton, E.
  • Haley, J. C.
  • Odette, G. R.
  • Lozano-Perez, S.
  • Cocks, A. C. F.
  • Liu, Fengxian
  • Castro Bernal, María Vanessa De
  • Leguey Galán, Teresa
  • Lozano Pérez, Sergio
  • Bagot, P. A. J.
  • Moody, M. P.
  • Auger, María A.
  • Armstrong, D. E. J.
  • Rieth, Michael
  • Britton, T. B.
  • Hoffmann, J.
  • Pintsuk, G.
  • Weingärtner, Tobias
  • Greuner, H.
  • Gibson, J. S. K. L.
  • Commin, L.
  • Knabl, W.
  • Antusch, S.
  • Derby, Brian
  • Wu, H. Z.
  • Wu, H.
OrganizationsLocationPeople

article

Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding

  • Armstrong, D. E. J.
  • Rieth, Michael
  • Britton, T. B.
  • Hoffmann, J.
  • Pintsuk, G.
  • Roberts, S. G.
  • Weingärtner, Tobias
  • Greuner, H.
  • Gibson, J. S. K. L.
  • Commin, L.
  • Knabl, W.
  • Antusch, S.
Abstract

he physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, \{HHF\} investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means.

Topics
  • impedance spectroscopy
  • microstructure
  • grinding
  • milling
  • strength
  • carbide
  • fatigue
  • composite
  • thermal expansion
  • texture
  • injection molding
  • tungsten
  • thermal conductivity
  • joining