People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wensrich, Christopher M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Radial basis functions and improved hyperparameter optimisation for gaussian process strain estimationcitations
- 2017Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imagingcitations
- 2017Tomographic reconstruction of residual strain in axisymmetric systems from Bragg-edge neutron imagingcitations
Places of action
Organizations | Location | People |
---|
article
Radial basis functions and improved hyperparameter optimisation for gaussian process strain estimation
Abstract
ver the past decade, a number of algorithms for full-field elastic strain estimation from neutron and X-ray measurements have been published. Many of the recently published algorithms rely on modelling the unknown strain field as a Gaussian Process (GP) – a probabilistic machine-learning technique. Thus far, GP-based algorithms have assumed a high degree of smoothness and continuity in the unknown strain field. In this paper, we propose three modifications to the GP approach to improve performance, primarily when this is not the case (e.g. for high-gradient or discontinuous fields); hyperparameter optimisation using k -fold cross-validation, a radial basis function approximation scheme, and gradient-based placement of these functions.