Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prawer, S.

  • Google
  • 8
  • 38
  • 225

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2016Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition36citations
  • 2015Structural transformation of implanted diamond layers during high temperature annealing19citations
  • 2014Development of a templated approach to fabricate diamond patterns on various substrates33citations
  • 2014Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures41citations
  • 2013Conventional and analytical electron microscopy study of phase transformation in implanted diamond layerscitations
  • 2013Direct measurement and modelling of internal strains in ion-implanted diamond35citations
  • 2013Direct measurement and modelling of internal strains in ion-implanted diamond35citations
  • 2010Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10-30 nm grain size prepared by chemical vapor deposition26citations

Places of action

Chart of shared publication
Ganesan, K.
1 / 4 shared
Zhan, H.
1 / 3 shared
Apollo, N. V.
1 / 1 shared
Lau, D.
1 / 1 shared
Červenka, J.
3 / 8 shared
Garrett, D. J.
1 / 1 shared
Fairchild, B. A.
3 / 3 shared
Suvorova, Alexandra
2 / 17 shared
Olivero, Paolo
2 / 6 shared
Rubanov, S.
4 / 5 shared
Gibson, B. C.
1 / 1 shared
Tomljenovic-Hanic, S.
1 / 4 shared
Karle, T. J.
1 / 14 shared
Greentree, A. D.
2 / 3 shared
Shimoni, O.
1 / 1 shared
Fox, K.
2 / 4 shared
Fang, J.
1 / 7 shared
Ostrikov, K.
1 / 1 shared
Lau, D. W. M.
2 / 5 shared
Aramesh, M.
1 / 1 shared
Olivero, P.
2 / 8 shared
D., Greentree A.
1 / 1 shared
Picollo, F.
1 / 6 shared
Bazzan, M.
2 / 6 shared
A., Fairchild B.
1 / 1 shared
Argiolas, N.
2 / 5 shared
Bosia, F.
1 / 17 shared
M., Lau D. W.
1 / 1 shared
Picollo, Federico
1 / 8 shared
Bosia, Federico
1 / 15 shared
Michaelson, Sh.
1 / 5 shared
Orwa, J.
1 / 1 shared
Williams, Oliver Aneurin
1 / 5 shared
Cowie, B. C. C.
1 / 2 shared
Gruen, D. M.
1 / 3 shared
Hoffman, A.
1 / 6 shared
Cimmino, A.
1 / 1 shared
Stacey, A.
1 / 2 shared
Chart of publication period
2016
2015
2014
2013
2010

Co-Authors (by relevance)

  • Ganesan, K.
  • Zhan, H.
  • Apollo, N. V.
  • Lau, D.
  • Červenka, J.
  • Garrett, D. J.
  • Fairchild, B. A.
  • Suvorova, Alexandra
  • Olivero, Paolo
  • Rubanov, S.
  • Gibson, B. C.
  • Tomljenovic-Hanic, S.
  • Karle, T. J.
  • Greentree, A. D.
  • Shimoni, O.
  • Fox, K.
  • Fang, J.
  • Ostrikov, K.
  • Lau, D. W. M.
  • Aramesh, M.
  • Olivero, P.
  • D., Greentree A.
  • Picollo, F.
  • Bazzan, M.
  • A., Fairchild B.
  • Argiolas, N.
  • Bosia, F.
  • M., Lau D. W.
  • Picollo, Federico
  • Bosia, Federico
  • Michaelson, Sh.
  • Orwa, J.
  • Williams, Oliver Aneurin
  • Cowie, B. C. C.
  • Gruen, D. M.
  • Hoffman, A.
  • Cimmino, A.
  • Stacey, A.
OrganizationsLocationPeople

article

Structural transformation of implanted diamond layers during high temperature annealing

  • Fairchild, B. A.
  • Suvorova, Alexandra
  • Olivero, Paolo
  • Prawer, S.
  • Rubanov, S.
Abstract

In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond–air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 °C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 °C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

Topics
  • surface
  • amorphous
  • Carbon
  • phase
  • grinding
  • milling
  • transmission electron microscopy
  • annealing
  • graphitisation