Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kluth, S. M.

  • Google
  • 3
  • 6
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2011Extended x-ray absorption fine structure study of porous GaSb formed by ion implantation20citations
  • 2006Structural stability of Cu nanocrystals in SiO2 exposed to high-energy ion irradiation8citations
  • 2005EXAFS comparison of crystalline/continuous and amorphous/porous GaSb8citations

Places of action

Chart of shared publication
Johannessen, B.
3 / 12 shared
Ridgway, M. C.
3 / 38 shared
Glover, C. J.
3 / 12 shared
Foran, G. J.
3 / 17 shared
Cookson, D. J.
1 / 7 shared
Llewellyn, D. J.
1 / 11 shared
Chart of publication period
2011
2006
2005

Co-Authors (by relevance)

  • Johannessen, B.
  • Ridgway, M. C.
  • Glover, C. J.
  • Foran, G. J.
  • Cookson, D. J.
  • Llewellyn, D. J.
OrganizationsLocationPeople

article

Structural stability of Cu nanocrystals in SiO2 exposed to high-energy ion irradiation

  • Johannessen, B.
  • Ridgway, M. C.
  • Glover, C. J.
  • Kluth, S. M.
  • Foran, G. J.
  • Cookson, D. J.
  • Llewellyn, D. J.
Abstract

<p>Cu nanocrystals (NCs) were synthesized in SiO<sub>2</sub> by ion implantation and thermal annealing. Annealing at two different temperatures of 950 °C and 650 °C yielded two different nanocrystal size distributions with an average diameter of 8.1 and 2.5 nm, respectively. Subsequently the NCs were exposed to 5.0 MeV Sn<sup>3+</sup> ion irradiation simultaneously with a thin Cu film as a bulk reference. The short-range atomic structure and average NC diameter was measured by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and small angle X-ray scattering (SAXS), respectively. Consistent with the high regeneration rate of bulk elemental metals, no irradiation induced defects were observed for the reference, whereas the small NCs (2.5 nm) were dissolved as Cu monomers in the matrix. The latter was attributed to irradiation-induced mixing of Cu, Si and O based on dynamic binary collision simulations. For the large NCs (8.1 nm) only minor structural changes were observed upon irradiation, consistent with a more bulk-like pre-irradiation structure.</p>

Topics
  • simulation
  • defect
  • annealing
  • small angle x-ray scattering
  • extended X-ray absorption fine structure spectroscopy