Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cristiani, G.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Ion beam studies of single crystalline manganite thin filmscitations

Places of action

Chart of shared publication
Araujo, Jp
1 / 91 shared
Marques, C.
1 / 7 shared
Vieira, Jm
1 / 17 shared
Alves, E.
1 / 129 shared
Amaral, Vs
1 / 15 shared
Habermeier, Hu
1 / 1 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Araujo, Jp
  • Marques, C.
  • Vieira, Jm
  • Alves, E.
  • Amaral, Vs
  • Habermeier, Hu
OrganizationsLocationPeople

article

Ion beam studies of single crystalline manganite thin films

  • Cristiani, G.
  • Araujo, Jp
  • Marques, C.
  • Vieira, Jm
  • Alves, E.
  • Amaral, Vs
  • Habermeier, Hu
Abstract

Colossal magneto resistive manganites are oxide materials where the magnetic interactions and the electrical properties are mainly controlled by the Mn valence ratio (+3/+4). For thin films these properties present also a strong dependence on strain and microstructure. In this study we focus on doped La-Sr-MnO3 and undoped stoichiometric LaMnO3. The films were prepared by laser ablation using stoichiometric ceramic targets and were deposited at a substrate temperature of 770 degreesC on single crystalline SrTiO3. All the films were submitted to the same in situ oxygen/heat treatment and the thicknesses were in the range of 20-500 nm. Rutherford backscattering spectrometry/channelling analysis shows the epitaxial growth of manganite films with an excellent single crystalline quality. For fully strained films, due to lattice mismatch with the substrate, we obtained minimum yields of 5% measured along the [10 0] growth direction. Strain relaxation leads to an increase of the minimum yield with the increase of thickness. Detailed angular scans were performed in selected films to study the misalignment along the tilt [I 10] and [I 11] directions in order to obtain an indication on the residual strain. The results were compared with X-ray diffraction and the correlation with respect to the structural quality of the films is remarkable. Moreover the magnetic measurements suggest a close relation between the transition temperature (T-c) and the strain in the films.

Topics
  • impedance spectroscopy
  • microstructure
  • x-ray diffraction
  • thin film
  • Oxygen
  • ceramic
  • spectrometry
  • Rutherford backscattering spectrometry
  • laser ablation