People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Monk, Stephen David
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A fast and portable imager for neutron and gamma emitting radionuclides
Abstract
Here a novel, real-time, highly-compact imaging system capable of detecting and localising gamma rays, thermal and fast neutrons is reported. The imaging system presented in this research comprises of a front-end containing three detection layers with a unique combination of scintillators optimised for multi-particle detection, and backed with silicon photomultiplier diode arrays to enable source localisation and to maximise efficiency. The system exploits Compton and neutron scattering techniques simultaneously to constitute a dual-mode radiation camera. Application-specific software algorithms are implemented here to process the numerous signals from the system and to reconstruct the location of radioactive sources using a back-projection technique. The three front-end detection layers fit within a volume of 120 mm120 mm200 mm, offering a uniquely compact imaging solution. A prototype of the instrument and the associated electronics have been designed using Monte Carlo simulations, and tested with Cs-137 (given its singular gamma-ray component) and Cf-252 (for its mixed neutron and gamma-ray emission). Experimental results indicate that the system can detect and localise both gamma-ray and neutron sources successfully, with intrinsic efficiencies in the order of 10−4. All results have been achieved within a scan time of 60 s and with a further data processing time of less than 60 s, for gamma sources of 300 kBq and neutron sources of 10neutrons per second (total) in close proximity (< 300 mm). Whilst high-speed, mixed-field, particle-imaging systems have numerous applications within both nuclear and non-nuclear fields; this particular system has been optimised for use within the areas of nuclear materials assay and proliferation prevention.