People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ott, Jennifer
Helsinki Institute of Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Quantifying the Impact of Al Deposition Method on Underlying Al2O3/Si Interface Qualitycitations
- 2022Characterization of Heavily Irradiated Dielectrics for Pixel Sensors Coupling Insulator Applicationscitations
- 2022Characterization of Heavily Irradiated Dielectrics for Pixel Sensors Coupling Insulator Applicationscitations
- 2022Multispectral photon-counting for medical imaging and beam characterization - A project reviewcitations
- 2022Multispectral photon-counting for medical imaging and beam characterization — A project reviewcitations
- 2022(oral talk) Compatibility of Al-neal in processing of Si devices with Al2O3 layer
- 2022Impact of doping and silicon substrate resistivity on the blistering of atomic-layer-deposited aluminium oxidecitations
- 2021Application of atomic layer deposited thin films to silicon detectors ; Atomikerroskasvatuksella tuotettujen ohutkalvojen soveltaminen puolijohdeilmaisimiincitations
- 2021AC-coupled n-in-p pixel detectors on MCz silicon with atomic layer deposition (ALD) grown thin filmcitations
- 2021AC-coupled n-in-p pixel detectors on MCz silicon with atomic layer deposition (ALD) grown thin filmcitations
- 2021Al-neal Degrades Al2O3 Passivation of Silicon Surfacecitations
- 2021Cadmium Telluride X-ray pad detectors with different passivation dielectricscitations
- 2021Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detectioncitations
- 2020Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxidecitations
- 2020Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxidecitations
- 2020Passivation of Detector-Grade Float Zone Silicon with Atomic Layer Deposited Aluminum Oxidecitations
- 2020Impact of doping and silicon substrate resistivity on the blistering of atomic-layer-deposited aluminium oxidecitations
- 2019Effects of Defects to the Performance of CdTe Pad Detectors in IBIC Measurementscitations
- 2019Cadmium Telluride X-ray pad detectors with different passivation dielectricscitations
- 2019Passivation of Detector‐Grade FZ‐Si with ALD‐Grown Aluminium Oxidecitations
- 2017Advanced processing of CdTe pixel radiation detectorscitations
- 2016Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectorscitations
Places of action
Organizations | Location | People |
---|
article
Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide
Abstract
<p>We report on the fabrication of capacitively (AC) coupled n(+)-in-p pixel detectors on magnetic Czochralski silicon substrates. In our devices, we employ a layer of aluminium oxide (Al2O3) grown by atomic layer deposition (ALD) as dielectric and field insulator, instead of the commonly used silicon dioxide (SiO2). As shown in earlier research, Al2O3 thin films exhibit high negative oxide charge, and can thus serve as a substitute for p-stop/p-spray insulation implants between pixels. In addition, they provide far higher capacitance densities than SiO2 due to their high dielectric constant, permitting more efficient capacitive coupling of pixels. Furthermore, metallic titanium nitride (TiN) bias resistors are presented as an alternative to punch-through or poly-Si resistors.</p><p>Devices obtained by the above mentioned process are characterized by capacitance-voltage and current-voltage measurements, and by 2 MeV proton microprobe. Results show the expected high negative charge of the Al2O3 dielectric, uniform charge collection efficiency over large areas of pixels, and acceptable leakage current densities.</p>