Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ni, P. A.

  • Google
  • 1
  • 12
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014NDCX-II target experiments and simulations12citations

Places of action

Chart of shared publication
Startsev, E.
1 / 1 shared
Logan, B. G.
1 / 1 shared
More, R. M.
1 / 1 shared
Terry, M.
1 / 1 shared
Koniges, Alice
1 / 5 shared
Friedman, A.
1 / 1 shared
Henestroza, E.
1 / 1 shared
Kwan, J. W.
1 / 1 shared
Ng, A.
1 / 2 shared
Liu, W.
1 / 34 shared
Barnard, J. J.
1 / 1 shared
Yuen, A.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Startsev, E.
  • Logan, B. G.
  • More, R. M.
  • Terry, M.
  • Koniges, Alice
  • Friedman, A.
  • Henestroza, E.
  • Kwan, J. W.
  • Ng, A.
  • Liu, W.
  • Barnard, J. J.
  • Yuen, A.
OrganizationsLocationPeople

article

NDCX-II target experiments and simulations

  • Startsev, E.
  • Logan, B. G.
  • More, R. M.
  • Terry, M.
  • Koniges, Alice
  • Friedman, A.
  • Henestroza, E.
  • Kwan, J. W.
  • Ng, A.
  • Ni, P. A.
  • Liu, W.
  • Barnard, J. J.
  • Yuen, A.
Abstract

The ion accelerator NDCX-II is undergoing commissioning at Lawrence Berkeley National Laboratory (LBNL). Its principal mission is to explore ion-driven High Energy Density Physics (HEDP) relevant to Inertial Fusion Energy (IFE) especially in the Warm Dense Matter (WDM) regime. We have carried out hydrodynamic simulations of beam-heated targets for parameters expected for the initial configuration of NDCX-II. For metal foils of order one micron thick (thin targets), the beam is predicted to heat the target in a timescale comparable to the hydrodynamic expansion time for experiments that infer material properties from measurements of the resulting rarefaction wave. We have also carried out hydrodynamic simulations of beam heating of metallic foam targets several tens of microns thick (thick targets) in which the ion range is shorter than the areal density of the material. In this case shock waves will form and we derive simple scaling laws for the efficiency of conversion of ion energy into kinetic energy of fluid flow. Geometries with a tamping layer may also be used to study the merging of a tamper shock with the end-of-range shock. This process can occur in tamped, direct drive IFE targets. <P />...

Topics
  • density
  • impedance spectroscopy
  • energy density
  • experiment
  • simulation