People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pancholi, Ketan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Thermal spray coatings for molten salt facing structural parts and enabling opportunities for thermochemical cycle electrolysiscitations
- 2024Fabrication with magnetic-spin coating: influence of magnetic-inertia energy ratio on gold-pickering ferrofluid droplet assembly morphology.
- 2024Thermal spray coatings for molten salt facing structural parts and enabling opportunities for thermochemical cycle electrolysis.citations
- 2023Investigation on mechanical and thermal properties of 3D-printed polyamide 6, graphene oxide and glass-fibre-reinforced composites under dry, wet and high temperature conditions.citations
- 2023The Effect of Ice Floe on the Strength, Stability, and Fatigue of Hybrid Flexible Risers in the Arctic Seacitations
- 2023The effect of ice floe on the strength, stability, and fatigue of hybrid flexible risers in the Arctic sea.citations
- 2023Role of interface in optimisation of polyamide-6/Fe3O4 nanocomposite properties suitable for induction heating.citations
- 2023Role of interface in optimisation of polyamide-6/Fe3O4 nanocomposite properties suitable for induction heatingcitations
- 2023Study of spatial organisation of magnetic field directed gold-pickering-ferrofluid-nanoemulsion in spin coated film.citations
- 2022Tuneable magnetic nanocomposites for remote self-healing
- 2022Tuneable magnetic nanocomposites for remote self-healing.citations
- 2022Optimising Crystallisation during Rapid Prototyping of Fe3O4-PA6 Polymer Nanocomposite Componentcitations
- 2022Optimising crystallisation during rapid prototyping of Fe3O4-PA6 polymer nanocomposite component.citations
- 2022Comparative strength and stability analysis of conventional and lighter composite flexible risers in ultra-deep water subsea environment.citations
- 2021A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materialscitations
- 2020Experimental investigation on micromachining of epoxy/graphene nano platelet nanocompositescitations
- 2020Experimental investigation on micromachining of epoxy/graphene nano platelet nanocomposites.citations
- 2020Insulating MgO–Al2O3–LDPE nanocomposites for offshore medium-voltage DC cables.citations
- 2020Insulating MgO–Al2O3–LDPE Nanocomposites for Offshore Medium-Voltage DC Cablescitations
- 2019Experimental investigation on micro milling of polyester/halloysite nano-clay nanocomposites.citations
- 2019Novel method of healing the fibre reinforced thermoplastic compositecitations
- 2019Rapid multifunctional composite part manufacturing using controlled in-situ polymerization of PA6 nanocomposite.citations
- 2019Recent developments in graphene oxide/epoxy carbon fiber-reinforced composites.citations
- 2019Novel method of healing the fibre reinforced thermoplastic composite: a potential model for offshore applications.citations
- 2019Effect of oleic acid coating of iron oxide nanoparticles on properties of magnetic polyamide-6 nanocomposite.citations
- 2019Effect of Oleic Acid Coating of Iron Oxide Nanoparticles on Properties of Magnetic Polyamide-6 Nanocompositecitations
- 2017Integrated self-healing of the composite offshore structures.citations
- 2017Integrated self-healing of the composite offshore structurescitations
- 2017Self-healing polymer nanocomposites for composite structure applications.
- 2017Insulating polymer nanocomposites for high thermal conduction and fire retarding applications.
Places of action
Organizations | Location | People |
---|
article
Role of interface in optimisation of polyamide-6/Fe3O4 nanocomposite properties suitable for induction heating
Abstract
<p class="MsoNormal">Induction heating of magnetic nanoparticles (MNPs) and localised melting of the surrounding high temperature engineering polymer matrix by generating microscopic or macroscopic eddy currents during magnetisation of a polymer nanocomposite (PMC) is crucial for realising induction heating aided structural bonding. However, the polymer heating should be homogeneous and efficient to avoid local pyrolysis of the polymer matrix, which results in degraded mechanical properties, or requiring a large coil for generating a high frequency magnetic field. Increasing the interfacial area by homogeneously dispersing the MNPs in the polymer matrix provides many microscopic eddy currents to dissipate the power through magnetisation and polarisation, leading to micro eddy current induced uniform heating of the PMC. However, the application of a hydrophobic coating on MNPs to aid dispersion can perturb the generation of eddy currents and affect the crystallinity and size of the crystallites responsible for the mechanical properties. In this work, the dielectric and magnetic properties, as well as the degree/size of crystallinity of a PMC containing oleic acid (OA) (22 and 55 w/w%) and silica coated (Stöber and reverse emulsion method) Fe<sub>3</sub>O<sub>4</sub> MNPs were measured to evaluate the effect of the interfacial coating and its chemistry. The correlation between the measured properties and dispersion state of the MNPs was established to demonstrate the comprehensive effects of interfacial coating on the PMC and this is a unique method to select a suitable PMC for induction aided structural bonding applications. The results showed that the lower amount of OA (22 w/w%) helped achieve the best dispersion to reduce the crystallinity size and increase degree of crystallinity, and to give the best candidate for achieving mechanical properties of the bonded carbon fibre reinforced polymer(CFRP). Moreover, the low concentration of OA helped achieve high polarisation for dielectric heating as well as eddy current formation due to the relatively high magnetic saturation. The silica coating proportionally reduced the magnetic response and electric polarisation of the PMC, which could affect its eddy current generation that is responsible for induction heating.</p>