People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mansoor, Sana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Sunlight-active, S-g-C3N4 boosts Ni-doped ZnFe2O4 photocatalysts for efficient organic pollutants degradationcitations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentialscitations
- 2024Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites
- 2024Harnessing solar power for enhanced photocatalytic degradation of coloured pollutants using novel Mg-doped-ZnFe2O4/S@g-C3N4 heterojunctioncitations
- 2023Fabrication of novel oxochalcogens halides of manganese and tin nanocomposites as highly efficient photocatalysts for dye degradation and excellent antimicrobial activitycitations
- 2023A highly explicit electrochemical biosensor for catechol detection in real samples based on copper-polypyrrolecitations
- 2022Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performancecitations
- 2022Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applicationscitations
Places of action
Organizations | Location | People |
---|
article
Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performance
Abstract
<p>This research work includes the green synthesis of silver and graphene oxide doped manganese oxide nanocomposites (NCs) using Fagonia arabica, which is commonly found in Asian countries and widely grown in deserts. Fagonia arabica is a medicinal herb used for the treatment of a variety of diseases. Fagonia arabica shows efficient anti-inflammatory, antimicrobial activity and antioxidant properties. Manganese oxide (MnO) NPs were synthesized by a green synthesis method using leaf extract of Fagonia arabica. The synthesized manganese oxide nanoparticles (NPs) were then used to form manganese oxide composites coupled with graphene oxide (GO) and silver (Ag). The main composite synthesized in this research work is MnO-GO-Ag NCs. All the synthesized NPs and composites were then characterized by SEM, XRD, EDX and ultra-violet–visible spectroscopy. The anti-inflammatory activity of the manganese oxide NPs and their MnO-GO and MnO-GO-Ag composites were checked by UV-visible spectroscopy and the obtained results were compared with the standard Diclofenac Sodium. The antioxidant activity of MnO-GO-Ag shows a higher scavenging potential than the standard ascorbic acid. SEM analysis was performed to check the size and morphology of the obtained product. The XRD analysis confirmed the purity and crystallinity of synthesized MnO-GO-Ag NCs. EDX spectra showed the peaks for C, O, Ag and Mn, indicating the presence of these elements in our desired composite. For anti-inflammatory activity, the MnO-GO-Ag NCs showed percentage inhibitions of 34.15 and 81.71%, having an IC<sub>50</sub> values of 0.15 and 0.23, at 0.1 and 0.5 mg/mL concentrations, respectively. MnO-GO-Ag showed percentage scavenging efficiencies of 59.84 and 74.48% at concentrations of 0.3 and 0.5 mg/mL, respectively, while the standard (ascorbic acid) showed scavenging potentials of 44.22 and 58.42% at similar concentrations. The MnO-GO-Ag NCs showed lower IC<sub>50</sub> values, thus exhibit the high efficiency of the NCs for anti-inflammatory and antioxidant activities.</p>