Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tiwary, C. S.

  • Google
  • 3
  • 13
  • 342

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application6citations
  • 2021A Perspective on the Catalysis Using the High Entropy Alloys182citations
  • 2021Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)154citations

Places of action

Chart of shared publication
Jha, S. R.
1 / 1 shared
Biswas, K.
3 / 13 shared
Halder, A.
2 / 3 shared
Madan, C.
1 / 1 shared
Singh, A.
1 / 32 shared
Mitra, R.
1 / 1 shared
Sharma, S.
1 / 31 shared
Yeah, J-W.
1 / 1 shared
Singh, A. K.
1 / 8 shared
Kumar, R.
1 / 56 shared
Sharma, L.
1 / 3 shared
Parui, A.
1 / 1 shared
Das, R.
1 / 6 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Jha, S. R.
  • Biswas, K.
  • Halder, A.
  • Madan, C.
  • Singh, A.
  • Mitra, R.
  • Sharma, S.
  • Yeah, J-W.
  • Singh, A. K.
  • Kumar, R.
  • Sharma, L.
  • Parui, A.
  • Das, R.
OrganizationsLocationPeople

article

A Perspective on the Catalysis Using the High Entropy Alloys

  • Biswas, K.
  • Tiwary, C. S.
  • Sharma, S.
  • Yeah, J-W.
Abstract

The near equimolar and non-equimolar high entropy alloys (HEAs) having five or more major components along with their mingled sites over the surface have made them unique materials for various catalytic reactions involving renewable energies. HEAs provide a platform to tune the surface microstructure and chemistry by selecting and controlling the elements, opening up vistas to design new materials for catalysis. The present perspective aims to provide the correlation between HEAs' structure and catalytic performance in various applications with views on challenges and unique opportunities. The scientific and technological curiosity needs to dig deep into the multicomponent phase space to discover various new materials with unique catalytic properties.

Topics
  • microstructure
  • surface
  • phase