People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duong, The
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Impact of Halide Anions in CsX (X = I, Br, Cl) on the Microstructure and Photovoltaic Performance of FAPbI3-Based Perovskite Solar Cellscitations
- 2022Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contactscitations
- 2021Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cellscitations
- 2021Direct Solar Hydrogen Generation at 20% Efficiency Using Low-Cost Materialscitations
- 2020Over 17% Efficiency Stand-Alone Solar Water Splitting Enabled by Perovskite-Silicon Tandem Absorberscitations
- 2018Metal halide perovskitecitations
- 2018The Interaction of Ion Migration with Shockley-Read-Hall Recombination in the Bulk of Perovskite Solar Cells Explains Anomalous Voltage and Luminescence Transientscitations
- 2017Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cellscitations
- 2017Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiencycitations
- 2017Inverted Hysteresis in CH3NH3PbI3 Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells
Abstract
<p>The incorporation of Cl anion and MA/Cs cations into FAPbI<sub>3</sub> perovskite has been shown to dramatically improve solar cell performance. However, the microscopic properties of hybrid metal halide perovskite materials are not well understood yet, and it is still unclear how ion incorporation stabilizes the cubic FAPbI<sub>3</sub> perovskite. In this work, we conduct a systematic study on the effect of the CsCl/MACl additives on the microstructure, crystal structure, and defects (nanotwins and stacking faults) of FA-based perovskite solar cells (PSCs). We find that the cubic α-phase in pure FAPbI<sub>3</sub> is unstable with evidence of additional phases in the experimental electron diffraction analyses, namely the hexagonal δ-phase, the cubic supercell structure (with double the lattice constant of the α-phase) and a rhombohedral phase. The addition of CsCl/MACl effectively stabilizes the cubic FAPbI<sub>3</sub> with a 2 × 2 × 2 supercell expansion and the Im3̅ space group. X-ray diffraction and photoluminescence studies show that the addition of CsCl/MACl results in a change in both the lattice parameter and the optical bandgap, respectively. The lattice contraction is a result of the incorporation of Cs/MA cations and Cl anion in the FAPbI<sub>3</sub> perovskites. Moreover, the addition of CsCl is shown to minimize the density of defects and improve the photoluminescence yield as well as the minority carrier lifetime of the perovskite films. All of these factors contribute to the improved device performance with a maximum efficiency of 21.98% measured for the 10 mol% CsCl perovskite layer.</p>