People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wolff, Niklas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Demonstration and STEM Analysis of Ferroelectric Switching in MOCVD‐Grown Single Crystalline Al0.85Sc0.15Ncitations
- 2024Demonstration and STEM Analysis of Ferroelectric Switching in MOCVD‐Grown Single Crystalline Al<sub>0.85</sub>Sc<sub>0.15</sub>Ncitations
- 2023Unlocking High‐Performance Supercapacitor Behavior and Sustained Chemical Stability of 2D Metallic CrSe<sub>2</sub> by Optimal Electrolyte Selectioncitations
- 2023Synthesis and Nanostructure Investigation of Hybrid β-Ga2 O3 /ZnGa2 O4 Nanocomposite Networks with Narrow-Band Green Luminescence and High Initial Electrochemical Capacitycitations
- 2022Ultrathin Al1−xScxN for Low‐Voltage‐Driven Ferroelectric‐Based Devicescitations
- 2022Investigation of Wafer-Level Fabricated Permanent Micromagnets for MEMScitations
- 2022Control of magnetoelastic coupling in Ni/Fe multilayers using He+ ion irradiationcitations
- 2021Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScNcitations
- 2020Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensorscitations
- 2020Nanocharacterization of Functional Materials for Biomagnetic Sensing an Breath Analysis ; Charakterisierung funktionaler Nanomaterialien für biomagnetische Sensoren und Atemanalyse
- 2019Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensorscitations
- 2019The effect of morphology and functionalization on UV detection properties of ZnO networked tetrapods and single nanowirescitations
- 2018Zinc oxide nanotetrapods with four different arm morphologies for versatile nanosensorscitations
- 2018ZnAl2O4-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applicationscitations
- 2016Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applicationscitations
Places of action
Organizations | Location | People |
---|
article
Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensors
Abstract
In this work, a facile two-step fabrication and characterization of printed acetone sensors based on mixed semiconducting metal oxides is introduced. The devices are fabricated by Direct Ink Writing metal microparticle (MP) stripes of commercially available pure iron and copper particles onto the surface of a glass substrate, forming a bridging multi-phase semiconducting oxide net by subsequent thermal annealing. The open, highly porous bridging structures consist of heterojunctions which are interconnected via non-planar CuO/Cu2O/Cu nanowires and Fe2O3/Fe nanospikes. Morphological, vibrational, chemical and structural studies were performed to investigate the contact-forming Fe2O3–CuO nanostructures on the surface of the MPs. The power consumption and the gas sensing properties showed selectivity to acetone vapor at an operating temperature of around 300 °C with a high gas response of about 50% and the lowest operating power of around 0.26 μW to a concentration of 100 ppm of acetone vapor. The combination of the possibility of acetone vapor detection, the controllable size and geometry and their low power make these printed structures important candidates for next developments of accessible detection devices, as well as acetone vapor monitoring (even below 1 ppm). The printing of MPs in general paves the way for a new generation of printed different devices, even in “home-made” conditions, for a manifold of applications tailored by the composition and geometry of the printed MP stripes, enabled through the simplicity and versatility of the fabrication method.