People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vahl, Alexander
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024ITO-TiO2 Heterojunctions on Glass Substrates for Photocatalytic Gold Growth Along Pattern Edges
- 2024Early-stage silver growth during sputter deposition on SiO2 and polystyrene - Comparison of biased DC magnetron sputtering, high-power impulse magnetron sputtering (HiPIMS) and bipolar HiPIMScitations
- 2024Early-stage silver growth during sputter deposition on SiO$_2$ and polystyrene – Comparison of biased DC magnetron sputtering, high-power impulse magnetron sputtering (HiPIMS) and bipolar HiPIMScitations
- 2024Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticlescitations
- 2023Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticles
- 2022A thin-film broadband perfect absorber based on plasmonic copper nanoparticlescitations
- 2021Heterostructure-based devices with enhanced humidity stability for H2 gas sensing applications in breath tests and portable batteries
- 2021Heterostructure-based devices with enhanced humidity stability for H2 gas sensing applications in breath tests and portable batteriescitations
- 2020Single CuO/Cu2O/Cu Microwire Covered by a Nanowire Network as a Gas Sensor for the Detection of Battery Hazardscitations
- 2020Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensorscitations
- 2019Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlationscitations
- 2019The impact of O2/Ar ratio on morphology and functional properties in reactive sputtering of metal oxide thin filmscitations
- 2019Electron beam effects on oxide thin films - structure and electrical property correlationscitations
- 2019Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputteringcitations
Places of action
Organizations | Location | People |
---|
article
Facile fabrication of semiconducting oxide nanostructures by direct ink writing of readily available metal microparticles and their application as low power acetone gas sensors
Abstract
In this work, a facile two-step fabrication and characterization of printed acetone sensors based on mixed semiconducting metal oxides is introduced. The devices are fabricated by Direct Ink Writing metal microparticle (MP) stripes of commercially available pure iron and copper particles onto the surface of a glass substrate, forming a bridging multi-phase semiconducting oxide net by subsequent thermal annealing. The open, highly porous bridging structures consist of heterojunctions which are interconnected via non-planar CuO/Cu2O/Cu nanowires and Fe2O3/Fe nanospikes. Morphological, vibrational, chemical and structural studies were performed to investigate the contact-forming Fe2O3–CuO nanostructures on the surface of the MPs. The power consumption and the gas sensing properties showed selectivity to acetone vapor at an operating temperature of around 300 °C with a high gas response of about 50% and the lowest operating power of around 0.26 μW to a concentration of 100 ppm of acetone vapor. The combination of the possibility of acetone vapor detection, the controllable size and geometry and their low power make these printed structures important candidates for next developments of accessible detection devices, as well as acetone vapor monitoring (even below 1 ppm). The printing of MPs in general paves the way for a new generation of printed different devices, even in “home-made” conditions, for a manifold of applications tailored by the composition and geometry of the printed MP stripes, enabled through the simplicity and versatility of the fabrication method.