Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Asadi, Kamal

  • Google
  • 18
  • 88
  • 1745

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2023Solution-processed multiferroic thin-films with large magnetoelectric coupling at room-temperature13citations
  • 2021Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer38citations
  • 2021Mechanically stable solution-processed transparent conductive electrodes for optoelectronic applications8citations
  • 2021Mechanically stable solution-processed transparent conductive electrodes for optoelectronic applications8citations
  • 2020Synthesis and Solution Processing of Nylon-5 Ferroelectric Thin Films18citations
  • 2020Synthesis and solution processing of nylon-5 ferroelectric thin films : the renaissance of odd-nylons?citations
  • 2019Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators61citations
  • 2019Solution-processed transparent ferroelectric nylon thin films52citations
  • 2019Elastic wave propagation in smooth and wrinkled stratified polymer films7citations
  • 2016The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)415citations
  • 2016The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)415citations
  • 2016The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)415citations
  • 2016Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage36citations
  • 2015Microstructured organic ferroelectric thin film capacitors by solution micromolding14citations
  • 2012Processing and Low Voltage Switching of Organic Ferroelectric Phase-Separated Bistable Diodes51citations
  • 2012Ferroelectric Phase Diagram of PVDF:PMMA111citations
  • 2011Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymers59citations
  • 2010Retention Time and Depolarization in Organic Nonvolatile Memories Based on Ferroelectric Semiconductor Phase-Separated Blends24citations

Places of action

Chart of shared publication
Sharifi Dehsari, Hamed
2 / 2 shared
Hassanpour Amiri, Morteza
1 / 2 shared
Abolhasani, Mohammad Mahdi
2 / 2 shared
Andaji-Garmaroudi, Zahra
1 / 13 shared
Nia, Narges Yaghoobi
1 / 2 shared
Di Carlo, Aldo
1 / 32 shared
Lamanna, Enrico
1 / 3 shared
Carlo, Aldo Di
1 / 12 shared
Castriotta, Luigi Angelo
1 / 8 shared
Kosasih, Felix U.
1 / 2 shared
Zendehdel, Mahmoud
1 / 2 shared
Yaghoobi Nia, Narges
1 / 2 shared
Divitini, Giorgio
1 / 37 shared
Abdi-Jalebi, Mojtaba
1 / 29 shared
Friend, Richard, H.
1 / 549 shared
Kosasih, Fu
1 / 3 shared
Zheng, Zhaoxiang
1 / 1 shared
Friend, Richard H.
1 / 48 shared
Ducati, Caterina
1 / 34 shared
Rezaei, Bahareh
2 / 2 shared
Afshar-Taromi, Faramarz
2 / 3 shared
Babaei, Zahra
2 / 2 shared
Dehsari, Hamed Sharifi
2 / 3 shared
Kianpisheh, Milad
2 / 2 shared
Kemmer-Jonas, Ulrike
3 / 3 shared
Frey, Holger
3 / 29 shared
Tiedemann, Philipp Von
3 / 3 shared
Anwar, Saleem
4 / 4 shared
Floudas, George
1 / 6 shared
Michels, Jasper
1 / 2 shared
Pipertzis, Achilleas
1 / 2 shared
Berger, Rüdiger
1 / 1 shared
Khayyam, Hamid
1 / 3 shared
Shirvanimoghaddam, Kamyar
1 / 3 shared
Joordens, Matthew
1 / 1 shared
Fashandi, Hossein
1 / 1 shared
Naebe, Minoo
1 / 9 shared
Pinkal, Daniel
1 / 2 shared
Pisula, Wojciech
1 / 11 shared
Kumar, Manasvi
1 / 1 shared
Lenz, Thomas
5 / 10 shared
Zajaczkowski, Wojciech
1 / 3 shared
Wagner, Manfred
1 / 8 shared
Graf, Robert
1 / 12 shared
Gueddida, A.
1 / 1 shared
Butt, H. J.
1 / 2 shared
Hesami, M.
1 / 1 shared
Djafari-Rouhani, B.
1 / 4 shared
Fytas, G.
1 / 5 shared
Rudykh, S.
1 / 2 shared
Dehsari, H. S.
1 / 1 shared
Gomopoulos, N.
1 / 2 shared
Driel, Tim Brandt Van
1 / 2 shared
Damjanovic, Dragan
3 / 21 shared
Katsouras, Ilias
4 / 7 shared
Zhao, Dong
4 / 4 shared
Kjær, Kasper Skov
2 / 6 shared
Blom, Paul W. M.
7 / 22 shared
Li, Mengyuan
5 / 6 shared
Leeuw, Dago M. De
1 / 3 shared
Gu, Yun
3 / 4 shared
Nielsen, Martin Meedom
2 / 25 shared
Brandt Van Driel, Tim
1 / 1 shared
De Leeuw, Dago M.
7 / 12 shared
Nielsen, Martin M.
1 / 11 shared
Kjaer, Kasper S.
1 / 8 shared
Van Driel, Tim B.
1 / 14 shared
Blom, Paulw. M.
1 / 2 shared
Zhao, D.
1 / 5 shared
Blom, Pwm
1 / 2 shared
Groen, W. A.
1 / 25 shared
De Leeuw, D. M.
1 / 4 shared
Glasser, Gunnar
1 / 3 shared
Christian Roelofs, W. S.
1 / 1 shared
Zimmermann, Samuel T.
1 / 1 shared
Richardson, George
1 / 1 shared
Stingelin, Natalie
4 / 23 shared
Kemerink, Martijn
1 / 31 shared
Michels, Jasper J.
2 / 6 shared
Biscarini, Fabio
1 / 7 shared
Beerends, Rene
1 / 1 shared
Spijkman, Mark-Jan
2 / 4 shared
Feldman, Kirill
1 / 4 shared
Wondergem, Harry J.
1 / 1 shared
Mcneill, Christopher R.
1 / 15 shared
Moghaddam, Reza Saberi
1 / 2 shared
Noheda, Beatriz
1 / 41 shared
Wildeman, Jurjen
1 / 3 shared
Chart of publication period
2023
2021
2020
2019
2016
2015
2012
2011
2010

Co-Authors (by relevance)

  • Sharifi Dehsari, Hamed
  • Hassanpour Amiri, Morteza
  • Abolhasani, Mohammad Mahdi
  • Andaji-Garmaroudi, Zahra
  • Nia, Narges Yaghoobi
  • Di Carlo, Aldo
  • Lamanna, Enrico
  • Carlo, Aldo Di
  • Castriotta, Luigi Angelo
  • Kosasih, Felix U.
  • Zendehdel, Mahmoud
  • Yaghoobi Nia, Narges
  • Divitini, Giorgio
  • Abdi-Jalebi, Mojtaba
  • Friend, Richard, H.
  • Kosasih, Fu
  • Zheng, Zhaoxiang
  • Friend, Richard H.
  • Ducati, Caterina
  • Rezaei, Bahareh
  • Afshar-Taromi, Faramarz
  • Babaei, Zahra
  • Dehsari, Hamed Sharifi
  • Kianpisheh, Milad
  • Kemmer-Jonas, Ulrike
  • Frey, Holger
  • Tiedemann, Philipp Von
  • Anwar, Saleem
  • Floudas, George
  • Michels, Jasper
  • Pipertzis, Achilleas
  • Berger, Rüdiger
  • Khayyam, Hamid
  • Shirvanimoghaddam, Kamyar
  • Joordens, Matthew
  • Fashandi, Hossein
  • Naebe, Minoo
  • Pinkal, Daniel
  • Pisula, Wojciech
  • Kumar, Manasvi
  • Lenz, Thomas
  • Zajaczkowski, Wojciech
  • Wagner, Manfred
  • Graf, Robert
  • Gueddida, A.
  • Butt, H. J.
  • Hesami, M.
  • Djafari-Rouhani, B.
  • Fytas, G.
  • Rudykh, S.
  • Dehsari, H. S.
  • Gomopoulos, N.
  • Driel, Tim Brandt Van
  • Damjanovic, Dragan
  • Katsouras, Ilias
  • Zhao, Dong
  • Kjær, Kasper Skov
  • Blom, Paul W. M.
  • Li, Mengyuan
  • Leeuw, Dago M. De
  • Gu, Yun
  • Nielsen, Martin Meedom
  • Brandt Van Driel, Tim
  • De Leeuw, Dago M.
  • Nielsen, Martin M.
  • Kjaer, Kasper S.
  • Van Driel, Tim B.
  • Blom, Paulw. M.
  • Zhao, D.
  • Blom, Pwm
  • Groen, W. A.
  • De Leeuw, D. M.
  • Glasser, Gunnar
  • Christian Roelofs, W. S.
  • Zimmermann, Samuel T.
  • Richardson, George
  • Stingelin, Natalie
  • Kemerink, Martijn
  • Michels, Jasper J.
  • Biscarini, Fabio
  • Beerends, Rene
  • Spijkman, Mark-Jan
  • Feldman, Kirill
  • Wondergem, Harry J.
  • Mcneill, Christopher R.
  • Moghaddam, Reza Saberi
  • Noheda, Beatriz
  • Wildeman, Jurjen
OrganizationsLocationPeople

article

Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators

  • Floudas, George
  • Michels, Jasper
  • Abolhasani, Mohammad Mahdi
  • Pipertzis, Achilleas
  • Berger, Rüdiger
  • Khayyam, Hamid
  • Shirvanimoghaddam, Kamyar
  • Joordens, Matthew
  • Fashandi, Hossein
  • Naebe, Minoo
  • Anwar, Saleem
  • Asadi, Kamal
Abstract

<p>Low power density of polymer piezoelectric nanogenerators is a major hurdle for their application as a potential mode of powering wearable and portable electronic devices. To increase the efficiency, here we suggest use of porous piezoelectric poly (vinylidenefluoride-co-trifluoroethylene)(P(VDF-TrFE))nanofibers. However, designing a process that allows introduction of pores in the nanometric fibers with a diameter of only several 100 nm, is highly challenging due to the intricate physics of polymer/solvent/anti-solvent interactions. Realization of the porous nanofibers would be a breakthrough in the field of piezoelectric nanogenerators. We presents an elegant approach based on the thermodynamics of polymer solutions to tailor porosity in P(VDF-TrFE)nanofibers. By adding a conscious amount of water, carefully chosen as non-solvent based on the ternary phase diagram of P(VDF-TrFE)/water/solvent, we intentionally induce liquid-phase demixing, which leads to formation of nanopores in the electrospun nanofiber. By calculating the mean composition trajectories, we predict and explain formation of the pores in the nanofibers, and show how little variations in initial water content substantially influences fiber porosity. Nanogenerators based on the porous electrospun P(VDF-TrFE)nanofibers show output power that systematically increases with porosity (with 500 times increase in output power for 45% porous fibers). The enhanced output is due to the reduced effective dielectric permittivity of the nanofibers. We unambiguously show that the voltage generation in nanofibers is of the same origin as in neat piezoelectric P(VDF-TrFE)films and is due to the relaxation of segments within the restricted amorphous phase. Understanding how to form nanopores, would have a major contribution to other fields, ranging from nanoporous membranes, as well as porous polymer structures for triboelectric nanogenerators.</p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • polymer
  • amorphous
  • phase
  • porosity
  • phase diagram