Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rio, Jose Sanchez Del

  • Google
  • 1
  • 3
  • 150

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis150citations

Places of action

Chart of shared publication
Garcia, Cristobal
1 / 5 shared
Trendafilova, Irina
1 / 19 shared
Villoria, Roberto Guzman De
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Garcia, Cristobal
  • Trendafilova, Irina
  • Villoria, Roberto Guzman De
OrganizationsLocationPeople

article

Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis

  • Garcia, Cristobal
  • Trendafilova, Irina
  • Rio, Jose Sanchez Del
  • Villoria, Roberto Guzman De
Abstract

Since 2012 there has been a rapid rise in the development of triboelectric nanogenerators due to their potential applications in the field of energy harvesting and self-powered sensors for vibrations, accelerations, touches, pressures and other mechanical motions. This study suggests a novel triboelectric nanogenerator based on the interaction between polyvinylidene fluoride and polyvinylpyrrolidone submicron fibers. Polyvinylpyrrolidone is introduced as a new material for the TENG because of its tendency of losing electrons easily, while polyvinylidene fluoride is selected for its strong-electron attracting ability. Electrospinning is suggested as a fabrication method for the nanofibers due to its simplicity, versatility and low-cost. Furthermore, the paper explores the possibility to use this triboelectric nanogenerator as a self-powered pressure sensor. For this purpose, the nanogenerator is subjected to dynamic mechanic analysis which produces controlled pressure forces applied with a certain frequency. This is the first work to suggest the use of dynamic mechanical analyzer to study the relation between the applied mechanical stimulus and the electric responses of the triboelectric nanogenerator. Eventually the sensitivity of the nanogenerator to different pressures is analyzed. A directly proportional relationship is found between the pressure applied and the resultant voltage and current amplitudes. The developed nanogenerator reacts to pressure in real time and as a sensor it exhibits a very high sensitivity and low experimental error for repeated measurements. The main contributions of this study are the development of a novel nanogenerator based on the triboelectric effect between polyvinylidene fluoride and polyvinylpyrrolidone electrospun fibers and the investigation for its potential use as a self-power pressure sensor. Eventually, the paper explores the advantages of dynamic mechanical analyzer for pressure analysis.

Topics
  • impedance spectroscopy
  • electrospinning
  • dynamic mechanical analysis