Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Kai

  • Google
  • 6
  • 43
  • 243

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Analytical model of the network topology and rigidity of calcium aluminosilicate glasses18citations
  • 2021The spectrum of germline susceptibility gene variants in Mexican patients with breast cancer (BC): A Prospective Multicenter studycitations
  • 2020Topological controls on aluminosilicate glass dissolution:Complexities induced in hyperalkaline aqueous environments18citations
  • 2017Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles96citations
  • 2017Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles96citations
  • 2015Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates15citations

Places of action

Chart of shared publication
Sant, Gaurav
2 / 23 shared
Li, Zhou
1 / 1 shared
Hoover, Christian G.
1 / 4 shared
Mauro, John C.
1 / 47 shared
Krishnan, N. M. Anoop
1 / 12 shared
Hu, Yushu
1 / 1 shared
Smedskjær, Morten Mattrup
1 / 111 shared
Bauchy, Mathieu
2 / 36 shared
Weitzel, Jeffrey N.
1 / 3 shared
Sand, Sharon
1 / 1 shared
Mejia, Rosa
1 / 1 shared
Herzog, Joseph
1 / 1 shared
Castillo, Danielle
1 / 3 shared
Chavarri-Guerra, Yanin
1 / 1 shared
Villarreal-Garza, Cynthia
1 / 2 shared
Seymour, Gubidxa Gutierrez
1 / 2 shared
Mendez, Dione Aguilar Y.
1 / 1 shared
Arteaga-Vazquez, Jazmin
1 / 1 shared
Cardona-Huerta, Servando
1 / 1 shared
Daneri-Navarro, Adrian
1 / 1 shared
Valero, Azucena Del Toro
1 / 1 shared
Mohar-Betancourt, Alejandro
1 / 1 shared
Beulo, Gregorio Quintero
1 / 1 shared
Rodríguez-Faure, Andrés
1 / 1 shared
Rodriguez-Olivares, Jose Luis
1 / 1 shared
Bullard, Jeffrey
1 / 5 shared
Oey, Tandre
1 / 15 shared
Wada, Akira
1 / 1 shared
Callagon, Erika
1 / 3 shared
Falzone, Gabriel
1 / 5 shared
Almusallam, Ahmed
2 / 2 shared
Komolafe, Abiodun
2 / 9 shared
Robinson, Andrew
2 / 6 shared
Beeby, Steve
2 / 45 shared
Torah, Russel N.
2 / 16 shared
Luo, Zhenhua
1 / 5 shared
Torah, Russel
1 / 5 shared
Luo, Jerry
1 / 1 shared
Beeby, Stephen
1 / 9 shared
Almusallam, A.
1 / 1 shared
Zhu, Dibin
1 / 2 shared
Tudor, Mj
1 / 20 shared
Komolafe, A.
1 / 1 shared
Chart of publication period
2021
2020
2017
2015

Co-Authors (by relevance)

  • Sant, Gaurav
  • Li, Zhou
  • Hoover, Christian G.
  • Mauro, John C.
  • Krishnan, N. M. Anoop
  • Hu, Yushu
  • Smedskjær, Morten Mattrup
  • Bauchy, Mathieu
  • Weitzel, Jeffrey N.
  • Sand, Sharon
  • Mejia, Rosa
  • Herzog, Joseph
  • Castillo, Danielle
  • Chavarri-Guerra, Yanin
  • Villarreal-Garza, Cynthia
  • Seymour, Gubidxa Gutierrez
  • Mendez, Dione Aguilar Y.
  • Arteaga-Vazquez, Jazmin
  • Cardona-Huerta, Servando
  • Daneri-Navarro, Adrian
  • Valero, Azucena Del Toro
  • Mohar-Betancourt, Alejandro
  • Beulo, Gregorio Quintero
  • Rodríguez-Faure, Andrés
  • Rodriguez-Olivares, Jose Luis
  • Bullard, Jeffrey
  • Oey, Tandre
  • Wada, Akira
  • Callagon, Erika
  • Falzone, Gabriel
  • Almusallam, Ahmed
  • Komolafe, Abiodun
  • Robinson, Andrew
  • Beeby, Steve
  • Torah, Russel N.
  • Luo, Zhenhua
  • Torah, Russel
  • Luo, Jerry
  • Beeby, Stephen
  • Almusallam, A.
  • Zhu, Dibin
  • Tudor, Mj
  • Komolafe, A.
OrganizationsLocationPeople

article

Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles

  • Almusallam, Ahmed
  • Yang, Kai
  • Komolafe, Abiodun
  • Robinson, Andrew
  • Beeby, Steve
  • Torah, Russel N.
  • Luo, Zhenhua
Abstract

This paper details the enhancements in the dielectric and piezoelectric properties of a low-temperature screen-printable piezoelectric nano-composite film on flexible plastic and textile substrates. These enhancements involved adding silver nano particles to the nano-composite material and using an additional cold isostatic pressing (CIP) post-processing procedure. These developments have resulted in a 18% increase in the free-standing piezoelectric charge coefficient d33 to a value of 98 pC/N. The increase in the dielectric constant of the piezoelectric film has, however, resulted in a decrease in the peak output voltage of the composite film. The potential for this material to be used to harvest mechanical energy from a variety of textiles under compressive and bending forces has been evaluated theoretically and experimentally. The maximum energy density of the enhanced piezoelectric material under 800 N compressive force was found to be 34 J/m3 on a Kermel textile. The maximum energy density of the enhanced piezoelectric material under bending was found to be 14.3 J/m3 on a cotton textile. These results agree very favourably with the theoretical predictions. For a 10x10 cm piezoelectric element 100 µm thick this equates to 38 μJ and 14.3 μJ of energy generated per mechanical action respectively which is a potentially useful amount of energy.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • energy density
  • silver
  • dielectric constant
  • composite
  • piezoelectric material
  • isostatic pressing