People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tang, Dai-Ming
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2019Tunable mechanical and electrical properties of coaxial BN-C nanotubescitations
- 2019Intrinsic and defect-related elastic moduli of boron nitride nanotubes as revealed by in situ transmission electron microscopycitations
- 2018Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probingcitations
- 2017Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricitycitations
- 2013Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopycitations
- 2013Transmission electron microscope as an ultimate tool for nanomaterial property studiescitations
- 2013Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbonscitations
- 2011Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscopecitations
Places of action
Organizations | Location | People |
---|
article
Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity
Abstract
Increasing energy demands require new materials, e.g., thermoelectrics, for efficient energy conversion of fossil fuels. However, their low figure of merit (ZT) limits widespread applications. Nanostructuring has been an effective way of lowering the thermal conductivity. However, grain growth at elevated temperature is still a big concern, for otherwise expected to be long-lasting thermoelectric generators. Here, we report a porous architecture containing nano- to micrometer size irregularly shaped and randomly oriented pores, scattering a wide spectrum of phonons without employing the conventional rattling phenomenon. Lattice thermal conductivity reaches the phonon glass limit. This design yields >100% enhancement in ZT, as compared to the pristine sample. An unprecedented and very promising ZT of 1.6 is obtained for Co23.4Sb69.1Si1.5Te6.0 alloy, by far the highest ZT ever reported for un-filled skutterudites, with further benefits, i.e. rare-earth-free and improved oxidation resistance enabling simple processing.