People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Navakul, Krongkaew
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor
Abstract
<p>Dengue fever is a major disease that kills many people in the developing world every year. During early infection, a patient displays a high temperature without other signs. After this stage, and without proper treatment, serious damage to internal organs can happen, which occasionally leads to death. A rapid technique for the early detection of dengue virus (DENV) could reduce the number of fatalities. This study presents a new technique for the detection, classification and antibody screening of DENV based on electrochemical impedance spectroscopy (EIS). We found that the charge transfer resistance (R<sub>ct</sub>) of a gold electrode coated with graphene oxide reinforced polymer was influenced by virus type and quantity exposed on the surface. Molecular recognition capability established during the GO-polymer composite preparation was used to explain this observation. The linear dependence of R<sub>ct</sub> versus virus concentrations ranged from 1 to 2 × 10<sup>3</sup> pfu/mL DENV with a 0.12 pfu/mL detection limit.</p>