People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Whittaker, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2016The pharmacokinetics and biodistribution of a 64 kDa PolyPEG star polymer after subcutaneous and pulmonary administration to ratscitations
- 2015Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerizationcitations
- 2015Delivering nitric oxide with nanoparticlescitations
- 2015Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymerscitations
- 2014Nano-sized graphene oxide as sole surfactant in miniemulsion polymerization for nanocomposite synthesiscitations
- 2014Photoinduced sequence-control via one pot living radical polymerization of acrylatescitations
- 2012Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerizationcitations
- 2011High-order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): Toward biological precisioncitations
- 2010Synthesis of hollow polymer nanocapsules exploiting gold nanoparticles as sacrificial templatescitations
- 2009Self-assembly of well-defined amphiphilic polymeric miktoarm stars, dendrons, and dendrimers in water: The effect of architecturecitations
- 2008Synthesis of linear and 4-arm star block copolymers of poly (methyl acrylate-b-solketal aerylate) by SET-LRP at 25 Ccitations
- 2008Convergent synthesis of second generation AB-type miktoarm dendrimers using "click" chemistry catalyzed by copper wirecitations
- 2008Self-assembly of amphiphilic polymeric dendrimers synthesized with selective degradable linkagescitations
- 2007Reactive alkyne and azide solid supports to increase purity of novel polymeric stars and dendrimers via the "click" reactioncitations
- 2006Synthesis of 3-miktoarm stars and 1st generation mikto dendritic copolymers by "living" radical polymerization and "click" chemistrycitations
Places of action
Organizations | Location | People |
---|
article
Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers
Abstract
Herein we report for the first time the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers synthesised via a versatile arm-first reversible addition-fragmentation chain transfer (RAFT) polymerisation approach. The biopharmaceutical behaviour of three different molecular weight (49, 64 and 94. kDa) POEGA stars was evaluated in rats and nude mice bearing human MDA MB-231 tumours after intravenous administration. The 94. kDa star polymer exhibited a longer plasma exposure time than the 49. kDa or 64. kDa star polymer; an observation attributable to differences in the rates of both polymer biodegradation and urinary excretion. Tumour biodistribution also correlated with molecular weight and was greatest for the longest circulating 94. kDa star. Different patterns of liver and spleen biodistribution were observed between mice and rats for the different sized polymers. The polymers were also well-tolerated in vivo and in vitro at therapeutic concentrations. From the Clinical Editor: Advances in nanotechnology has enabled scientists to produce nanoparticle as drug carriers in cancer therapeutics. In this article, the authors studied the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers of different size, after intravenous injections. This would allow the subsequent comparison to other drug delivery systems for better drug delivery.