People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nair, Bindu M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2013In vivo toxicity evaluation of gold-dendrimer composite nanodevices with different surface chargescitations
- 2008Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapycitations
- 2007Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor modelscitations
- 2005In Vivo Biodistribution of Dendrimers and Dendrimer Nanocomposites — Implications for Cancer Imaging and Therapycitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy
Abstract
This article is under my maiden name: Nair BM We describe the simple fabrication of poly({198Au}) radioactive gold-dendrimer composite nanodevices in distinct sizes (diameter between 10 nm and 29 nm) for targeted radiopharmaceutical dose delivery to tumors in vivo. Irradiation of aqueous solutions of 197Au containing poly(amidoamine) dendrimer tetrachloroaurate salts or {197Au0} gold-dendrimer nanocomposites in a nuclear reactor resulted in the formation of positively charged and soluble poly{198Au0} radioactive composite nanodevices (CNDs). A mouse melanoma tumor model was used to test whether the poly{198Au0} CNDs can deliver a therapeutic dose. A single intratumoral injection of poly{198Au0}(d=22nm) CNDs in phosphate-buffered saline delivering a dose of 74 muCi resulted after 8 days in a statistically significant 45% reduction in tumor volume, when compared with untreated groups and those injected with the "cold" nanodevice. No clinical toxicity was observed during the experiments. This study provides the first proof of principle that radioactive CNDs can deliver therapeutic doses to tumors.