Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hsu, C.-Y.

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalities6citations

Places of action

Chart of shared publication
Rebholz, Claus
1 / 31 shared
Kostoglou, Nikolaos
1 / 12 shared
Mitterer, Christian
1 / 28 shared
Hinder, Steven J.
1 / 15 shared
Wang, Cheng-Yu
1 / 2 shared
Baker, Mark
1 / 10 shared
Guo, R.-F.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Rebholz, Claus
  • Kostoglou, Nikolaos
  • Mitterer, Christian
  • Hinder, Steven J.
  • Wang, Cheng-Yu
  • Baker, Mark
  • Guo, R.-F.
OrganizationsLocationPeople

article

Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalities

  • Rebholz, Claus
  • Kostoglou, Nikolaos
  • Mitterer, Christian
  • Hinder, Steven J.
  • Wang, Cheng-Yu
  • Baker, Mark
  • Guo, R.-F.
  • Hsu, C.-Y.
Abstract

In this work, lithium borohydride (LiBH4) was loaded into plasma-activated nanoporous few-layer graphene (FLG) powders with different specific surface areas (~400-800 m2/g) and functional groups (carboxyl and amine) to investigate the effect of LiBH4@FLG nanoconfinement on the dehydrogenation properties. It was observed that the dehydrogenation temperature dropped significantly from 463 oC for pure LiBH4 to ~120 oC for all LiBH4@FLG nanocomposites. This was attributed to the nano-sized pores of the FLG materials that can constrain LiBH4 by nanoconfinement and thus decrease the dehydrogenation temperature. The highest dehydrogenation yield of 83% occurred in LiBH4@FLG with 400 m2/g surface area and amine groups, possibly due to Lewis basic amino groups and better graphitic structure. Moreover, it was found that both the surface area and the graphitic defects on the FLG host materials have an influence on the dehydrogenation kinetics. LiBH4@FLG with 800 m2/g surface area and carboxyl groups possesses the lowest activation energy due to its high surface area and high concentration of<br/>graphitic defects.

Topics
  • nanocomposite
  • pore
  • surface
  • Lithium
  • activation
  • amine