Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baker, Mark

  • Google
  • 10
  • 56
  • 142

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Short-Time Magnetron Sputtering for the Development of Carbon–Palladium Nanocompositescitations
  • 2023Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalities6citations
  • 2021Design Aspects of Doped CeO2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approachcitations
  • 2020Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene40citations
  • 2018The effect of Ni addition onto a Cu-based ternary support on the H₂ production over glycerol steam reforming reaction29citations
  • 2017Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD12citations
  • 2017A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data41citations
  • 2017Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition9citations
  • 2017Dicarboxylic acids analyzed by time-of-flight secondary ion mass spectrometry (Introduction to parts 0 to VI)citations
  • 2015Influence of CdCl2 activation treatment on ultra-thin Cd1−xZnxS/CdTe solar cells5citations

Places of action

Chart of shared publication
Knabl, Florian
1 / 2 shared
Rebholz, Claus
3 / 31 shared
Bousser, Etienne
2 / 12 shared
Kostoglou, Nikolaos
3 / 12 shared
Mitterer, Christian
3 / 28 shared
Hinder, Steven J.
3 / 15 shared
Terziyska, Velislava
1 / 1 shared
Wang, Cheng-Yu
2 / 2 shared
Guo, R.-F.
1 / 1 shared
Hsu, C.-Y.
1 / 1 shared
Efstathiou, Angelos
1 / 1 shared
Anjum, Dalaver H.
1 / 25 shared
Belabbes, Abderrezak
1 / 6 shared
Vasiliades, Michalis
1 / 1 shared
Vega, Lourdes F.
1 / 6 shared
Damaskinos, Constantinos M.
1 / 1 shared
Polychronopoulou, Kyriaki
2 / 12 shared
Almutawa, Alia Majid Ibrahim
1 / 1 shared
Kontos, Athanassios G.
1 / 4 shared
Giannakopoulos, Konstantinos
1 / 1 shared
Kondo, Junko N.
1 / 1 shared
Tampaxis, Christos
1 / 2 shared
Liao, Chi-Wei
1 / 1 shared
Matthews, Allan
1 / 147 shared
Steriotis, Theodore
1 / 8 shared
Hinder, Steve
1 / 1 shared
Dabbawala, Aasif A.
1 / 3 shared
Papageridis, Kyriakos N.
1 / 4 shared
Goula, Maria A.
1 / 12 shared
Alkhoori, Ayesha A.
1 / 6 shared
Sebastian, Victor
1 / 3 shared
Hinder, Steven
1 / 7 shared
Charisiou, Nikolaos D.
1 / 12 shared
Kartopu, Giray
2 / 8 shared
Grilli, R.
1 / 3 shared
Babar, Shumalia
1 / 1 shared
Barrioz, Vincent
2 / 26 shared
Clayton, Andrew
2 / 7 shared
Lamb, David
2 / 2 shared
Irvine, Stuart
2 / 13 shared
Gibson, P. N.
2 / 5 shared
London, T.
1 / 1 shared
Whiting, Mark
1 / 3 shared
De Bono, Damaso
1 / 1 shared
Sellin, Paul
1 / 7 shared
Veale, M.
1 / 1 shared
Seller, P.
1 / 7 shared
Duarte, D.
1 / 1 shared
Wilson, M.
1 / 12 shared
Bell, S.
1 / 3 shared
Schneider, A.
1 / 10 shared
Watts, John
1 / 3 shared
Trindade, Gustavo F.
1 / 9 shared
Ferreira, Jose M.
1 / 1 shared
Abel, Marie-Laure
1 / 5 shared
Babar, S.
1 / 2 shared
Chart of publication period
2024
2023
2021
2020
2018
2017
2015

Co-Authors (by relevance)

  • Knabl, Florian
  • Rebholz, Claus
  • Bousser, Etienne
  • Kostoglou, Nikolaos
  • Mitterer, Christian
  • Hinder, Steven J.
  • Terziyska, Velislava
  • Wang, Cheng-Yu
  • Guo, R.-F.
  • Hsu, C.-Y.
  • Efstathiou, Angelos
  • Anjum, Dalaver H.
  • Belabbes, Abderrezak
  • Vasiliades, Michalis
  • Vega, Lourdes F.
  • Damaskinos, Constantinos M.
  • Polychronopoulou, Kyriaki
  • Almutawa, Alia Majid Ibrahim
  • Kontos, Athanassios G.
  • Giannakopoulos, Konstantinos
  • Kondo, Junko N.
  • Tampaxis, Christos
  • Liao, Chi-Wei
  • Matthews, Allan
  • Steriotis, Theodore
  • Hinder, Steve
  • Dabbawala, Aasif A.
  • Papageridis, Kyriakos N.
  • Goula, Maria A.
  • Alkhoori, Ayesha A.
  • Sebastian, Victor
  • Hinder, Steven
  • Charisiou, Nikolaos D.
  • Kartopu, Giray
  • Grilli, R.
  • Babar, Shumalia
  • Barrioz, Vincent
  • Clayton, Andrew
  • Lamb, David
  • Irvine, Stuart
  • Gibson, P. N.
  • London, T.
  • Whiting, Mark
  • De Bono, Damaso
  • Sellin, Paul
  • Veale, M.
  • Seller, P.
  • Duarte, D.
  • Wilson, M.
  • Bell, S.
  • Schneider, A.
  • Watts, John
  • Trindade, Gustavo F.
  • Ferreira, Jose M.
  • Abel, Marie-Laure
  • Babar, S.
OrganizationsLocationPeople

article

Improved thermolytic dehydrogenation of LiBH4 nanoconfined in few-layer graphene with different functionalities

  • Rebholz, Claus
  • Kostoglou, Nikolaos
  • Mitterer, Christian
  • Hinder, Steven J.
  • Wang, Cheng-Yu
  • Baker, Mark
  • Guo, R.-F.
  • Hsu, C.-Y.
Abstract

In this work, lithium borohydride (LiBH4) was loaded into plasma-activated nanoporous few-layer graphene (FLG) powders with different specific surface areas (~400-800 m2/g) and functional groups (carboxyl and amine) to investigate the effect of LiBH4@FLG nanoconfinement on the dehydrogenation properties. It was observed that the dehydrogenation temperature dropped significantly from 463 oC for pure LiBH4 to ~120 oC for all LiBH4@FLG nanocomposites. This was attributed to the nano-sized pores of the FLG materials that can constrain LiBH4 by nanoconfinement and thus decrease the dehydrogenation temperature. The highest dehydrogenation yield of 83% occurred in LiBH4@FLG with 400 m2/g surface area and amine groups, possibly due to Lewis basic amino groups and better graphitic structure. Moreover, it was found that both the surface area and the graphitic defects on the FLG host materials have an influence on the dehydrogenation kinetics. LiBH4@FLG with 800 m2/g surface area and carboxyl groups possesses the lowest activation energy due to its high surface area and high concentration of<br/>graphitic defects.

Topics
  • nanocomposite
  • pore
  • surface
  • Lithium
  • activation
  • amine