People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcfadden, Shaun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Structures in grain-refined directionally solidified hypoeutectic Al-Cu alloys: Benchmark experiments under microgravity on-board the International Space Stationcitations
- 2022Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regimecitations
- 2022Concurrent model for sharp and progressive columnar to equiaxed transitions validated by directional solidification experiments processed in microgravity conditionscitations
- 2022Competitive growth during directional solidification experiments of 〈1 1 1〉 Dendritescitations
- 2022On the application of Vickers micro hardness testing to isotactic polypropylenecitations
- 2021Validation of a Front-Tracking Model of the Columnar to Equiaxed Transition using Solidification Results from the Maxus 7 Microgravity Platform
- 2021Multiple Dendrite Tip Tracking for In-Situ Directional Solidification: Experiments and Comparisons to Theorycitations
- 2021A Simplified Thermal Approximation Method to include the effects of Marangoni Convection in the melt pools of processes that involve moving point heat sourcescitations
- 2021Analysis of spatter removal by sieving during a powder-bed fusion manufacturing campaign in grade 23 titanium alloycitations
- 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloycitations
- 2020Reuse of grade 23 Ti6Al4V powder during the laser-based powder bed fusion processcitations
- 2018A Review of Powder Bed Fusion for Additively Manufactured Ti-6wt.%Al-4wt.%V
- 2018A Nucleation Progenitor Function approach to polycrystalline equiaxed solidification modelling with application to a microgravity transparent alloy experiment observed in-situcitations
- 2018Influence of natural and forced gravity conditions during directional columnar solidificationcitations
- 2018A REVIEW OF THERMAL MODELLING FOR METAL ADDITIVE MANUFACTURING PROCESSES: BASIC ANALYTICAL MODELS TO STATE-OF-THE-ART SOFTWARE PACKAGES.
- 2017Axisymmetric front tracking model for the investigation of grain structure evolution during directional solidificationcitations
- 2017Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Projectcitations
- 2015Conditions for CET in a gamma TiAl alloycitations
- 2013Analysis of a Microgravity Solidification Experiment for Columnar to Equiaxed Transitions with Modeling Resultscitations
- 2013Macroscopic model for predicting columnar to equiaxed transitions using columnar front tracking and average equiaxed growthcitations
- 2011Review of the MAXUS 8 sounding rocket experiment to investigate solidification in a Ti-Al-Nb alloy
- 2010Analysis of a microgravity solidification experiment for Columnar to Equiaxed Transitions with modeling resultscitations
- 2010Modeling of heat and solute interactions upon grain structure solidificationcitations
- 2010Macroscopic model for predicting columnar to equiaxed transitions using columnar front tracking and average equiaxed growthcitations
- 2010The development of a microgravity experiment involving columnar to equiaxed transition for solidification of a Ti-Al based alloycitations
- 2009Prediction of columnar to equiaxed transition in alloy castings with convective heat transfer and equiaxed grain transportation
- 2009A combined experimental-model approach to estimate the solidification macrostructures formed during a microgravity experiment on Ti-Al based intermetallic alloys
- 2009A comparison of columnar-to-equiaxed transition prediction methods using simulation of the growing columnar frontcitations
- 2009A front-tracking model to predict solidification macrostructures and columnar to equiaxed transitions in alloy castingscitations
- 2008Validation of a Front-Tracking Model of the Columnar to Equiaxed Transition using Solidification Results from the Maxus 7 Microgravity Platform
- 2008Validation of a Front-Tracking Model of the Columnar to Equiaxed Transition using Solidification Results from the Maxus 7 Microgravity Platform
- 2008Modeling of heat and solute interactions upon grain structure solidificationcitations
- 2007Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidificationcitations
- 2006Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL)
- 2006A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steelscitations
- 2006Prediction of the formation of an equiaxed zone ahead of a columnar front in binary alloy castingscitations
- 2005A front-tracking method of predicting the solidification microstructure in shape castings
Places of action
Organizations | Location | People |
---|
article
Structures in grain-refined directionally solidified hypoeutectic Al-Cu alloys: Benchmark experiments under microgravity on-board the International Space Station
Abstract
International audience ; Benchmark solidification experiments were successfully performed under microgravity conditions on-board the International Space Station (ISS) within the ESAprogramme CETSOL (Columnar-to-Equiaxed Transition in SOLidification Processing). Cylindrical samples of grain-refined Al-4wt.%Cu, Al-10wt.%Cu and Al-20wt.%Cu alloys were directionally solidified in a gradient furnace to investigate columnar and equiaxed dendritic growth structures as well as the columnar to equiaxed transition under diffusive conditions. The determination of temperature gradients; interface velocities; and cooling rates at liquidus, solidus, and eutectic front positions provides well-defined thermal experimental characterization. The evaluation of the flight samples demonstrates that no significant macrosegregation along the sample axis occurred and no radial effects were observed. Therefore, purely diffusive solidification behaviour without any residual melt convection can be assumed for these microgravity experiments. The analyses of the microstructure in longitudinal cross-sections show dendritic structures without any pore formation and the averaged eutectic fraction is largely constant along the sample. The samples of refined Al-4wt.%Cu alloy show a sharp CET from columnar dendrites to a fine equiaxed steady-state grain structure whereas in the samples of refined Al-10wt.%Cu and Al-20wt.%Cu alloy, only equiaxed dendritic grain growth is observed. A quantitative analysis of the equiaxed grain morphology shows, that the shapes of the equiaxed dendrites depend on the applied temperature gradient, but the grain sizes in radial and longitudinal directions are identical. Therefore, a fully equiaxed dendritic growth structure without dendrite elongation was obtained. Compared to experiments in microgravity with non-refined Al-Cu alloys the average equiaxed grain size is about three times smaller.