People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Rhys
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Quantifying cracking and strain localisation in a cold spray chromium coating on a zirconium alloy substrate under tensile loading at room temperaturecitations
- 2024Quantifying cracking and strain localisation in a cold spray chromium coating on a zirconium alloy substrate under tensile loading at room temperaturecitations
- 2024Identification, classification and characterisation of hydrides in Zr alloyscitations
- 2024Identification, classification and characterisation of hydrides in Zr alloys
- 2024Fractional densities and character of dislocations in different slip modes from powder diffraction patternscitations
- 2024Fractional densities and character of dislocations in different slip modes from powder diffraction patternscitations
- 2024Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
- 2024Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
- 2023Characterization of Irradiation Damage Using X-Ray Diffraction Line-Profile Analysiscitations
- 2023Characterization of Irradiation Damage Using X-Ray Diffraction Line-Profile Analysiscitations
- 2023Exploring the hydride-slip interaction in zirconium alloyscitations
- 2023Characterization of Hydride Precipitation and Reorientation in Zircaloy-4 at Different Metallurgical States
- 2023The role of hydrides and precipitates on the strain localisation behaviour in a zirconium alloycitations
- 2023Dislocation density transients and saturation in irradiated zirconiumcitations
- 2023Dislocation density transients and saturation in irradiated zirconiumcitations
- 2022Investigating Irradiation Creep of Zircaloy-4 Using In-Situ Proton Irradiation and Transmission Electron Microscopy
- 2022Multi-dimensional study of the effect of early slip activity on fatigue crack initiation in a near-α titanium alloycitations
- 2022A novel method for radial hydride analysis in zirconium alloys:HAPPycitations
- 2022A novel method for radial hydride analysis in zirconium alloyscitations
- 2022Optimising large-area crystal orientation mapping of nanoscale β phase in α + β titanium alloys using EBSDcitations
- 2022Simulation of crystal plasticity in irradiated metals: a case study on Zircaloy-4citations
- 2022CHARACTERISATION OF HYDRIDE PRECIPITATION AND REORIENTATION IN ZIRCALOY-4 AT DIFFERENT METALLURGICAL STATES
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2021The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2020Comparison of sub-grain scale digital image correlation calculated using commercial and open-source software packagescitations
- 2020Understanding strain localisation behaviour in a near-α Ti-alloy during initial loading below the yield stress
- 2020Early slip activity and fatigue crack initiation of a near alpha titanium alloycitations
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Data for: Characterisation of irradiation enhanced strain localisation in a zirconium alloy
- 2018Enabling high resolution strain mapping in zirconium alloyscitations
- 2018Enabling high resolution strain mapping in zirconium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
Abstract
Recently, iron-based alloys with a π-ferrosilicide phase have emerged as potential <br/>alternatives to cobalt-based hardfacing alloys. Here, we present the development of two π-ferrosilicide containing alloys: one with a ferritic matrix and the other with a ferriticaustenitic matrix. In the as-cast condition, both alloys revealed fine Ni- and Si-rich coherent cubic shaped D0<sub>3</sub> precipitates in the BCC matrix. The π-ferrosilicide phase was found to have an orientation relationship with the ferrite phase, nucleating within ferrite matrix and from ferrite grain boundaries. In contrast to carbide-strengthened hardfacing Fe-alloys, here the dissolution of the π-ferrosilicide phase at 1200<sup>o</sup>C enables easy thermomechanical processing of these alloys, which results in refinement of the π-ferrosilicide and additional <br/>formation of χ-phase precipitates in the ferrite. Nano-scratch tests provided evidence of a resilient silicide-ferrite interface, likely to due to it possessing some coherency. Both alloys also displayed compressive strengths approaching 2 GPa and ductility in compression of approximately 25%. The combination of processability and attractive mechanical properties suggests that these alloys have the potential to serve as alternatives to carbide-reinforced hardfacing Fe-alloys.