People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nießen, Frank
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Efficient ab initio stacking fault energy mapping for dilute interstitial alloyscitations
- 2024Residual Stress Measurement across the Scales
- 2023Reconciling experimental and theoretical stacking fault energies in face-centered cubic materials with the experimental twinning stresscitations
- 2023Aging 17-4 PH martensitic stainless steel prior to hardeningcitations
- 2023Ab initio study of the effect of interstitial alloying on the intrinsic stacking fault energy of paramagnetic γ-Fe and austenitic stainless steelcitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2021Parent grain reconstruction from partially or fully transformed microstructures in MTEX
- 2021Experimental validation of negative stacking fault energies in metastable face-centered cubic materialscitations
- 2021Multiscale in-situ studies of strain-induced martensite formation in inter-critically annealed extra-low-carbon martensitic stainless steelcitations
- 2020Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glasscitations
- 2020Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glasscitations
- 2020Evolution of substructure in low-interstitial martensitic stainless steel during temperingcitations
- 2018In-situ analysis of redistribution of carbon and nitrogen during tempering of low interstitial martensitic stainless steelcitations
- 2018Martensite Formation from Reverted Austenite at Sub-zero Celsius Temperaturecitations
- 2018In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steelcitations
- 2018Formation and stabilization of reverted austenite in supermartensitic stainless steelcitations
- 2018Phase Transformations in Supermartensitic Stainless Steels
- 2017Kinetics analysis of two-stage austenitization in supermartensitic stainless steelcitations
- 2017Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tubecitations
- 2017Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tubecitations
- 2017Formation and stabilization of reversed austenite in supermartensitic stainless steel
- 2017Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steelcitations
- 2016In Situ Techniques for the Investigation of the Kinetics of Austenitization of Supermartensitic Stainless Steelcitations
Places of action
Organizations | Location | People |
---|
article
Aging 17-4 PH martensitic stainless steel prior to hardening
Abstract
<p>Precipitation hardening martensitic stainless steel 17-4 PH is conventionally austenitized and air cooled to room temperature to form martensite. On aging the martensitic condition tiny Cu-rich precipitates are formed that provide high strength. In the present investigation, the steel was aged in austenitic condition prior to martensite formation. Dilatometry, transmission electron microscopy, atomic probe tomography, synchrotron X-Ray diffraction, electron backscatter diffraction, hardness tests and tensile tests were applied to study austenite aging and its effects on: (i) the subsequent transformation of austenite into martensite, (ii) the microstructure of the forming martensite and (iii) the mechanical properties of the material. Austenite aging favors early formation of Cu clusters followed by precipitation of Cu particles. The evolution of the Cu precipitate size with aging time follows traditional Ostwald ripening kinetics which is rate controlled by Cu diffusion in austenite. Austenite aging affects the kinetics of martensite formation and the substructure of the martensite laths; overall, it provides significant strengthening to the martensitic material. The contribution of precipitates to the strength of martensite is interpreted in terms of the Russell-Brown model for modulus strengthening. The data and the model are reconciled by re-evaluating the adjustable parameter used in the original work. Finally, the work reports the influence of austenite aging on the mechanical properties of the material when this is further aged to peak strength in martensitic condition.</p>