People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burnett, Tl
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Exploration of fs-laser ablation parameter space for 2D/3D imaging of soft and hard materials by tri-beam microscopycitations
- 2024Damage evolution in multilayer braided composite tubes under torsion studied by in-situ X-ray Computed Tomography (CT)
- 2024The role of cavitation in the toughening of elastomer nanocomposites reinforced with graphene nanoplateletscitations
- 2023Computational study of the geometrical influence of grain topography on short crack propagation in AA7XXX series alloyscitations
- 2023In situ observation of environmentally assisted crack initiation and short crack growth behaviour of new-generation 7xxx series alloys in humid aircitations
- 2022Large-scale serial sectioning of environmentally assisted cracks in 7xxx Al alloys using femtosecond Laser-PFIBcitations
- 2022Embedded 3D printing of Multi-material composites
- 2022Tailoring the microstructure of lamellar Ti3C2Tx MXene aerogel by compressive strainingcitations
- 2021X-ray Tomographic Observation of Environmental Assisted Cracking in Heat-treated Lean Duplex Stainless Steelcitations
- 2021Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloyscitations
- 2020Environmentally induced crack (EIC) initiation, propagation, and failure: A 3D in-situ time-lapse study of AA5083 H131citations
- 2020Redistribution of carbon caused by butterfly defects in bearing steelscitations
- 2020Tracking polycrystal evolution non-destructively in 3D by laboratory X-ray diffraction contrast tomographycitations
- 2020X-Ray Tomographic Characterisation of Pitting Corrosion in Lean Duplex Stainless Steelcitations
- 2019On the application of Xe+ plasma FIB for micro-fabrication of small-scale tensile specimenscitations
- 2019Initiation and short crack growth behaviour of environmentally induced cracks in AA5083 H131 investigated across time and length scalescitations
- 2019Completing the picture through correlative characterizationcitations
- 2018Atomic-Scale Insights into the Oxidation of Aluminumcitations
- 2018Multi-Modal Plasma Focused Ion Beam Serial Section Tomography of an Organic Paint Coatingcitations
- 2018Ductile Fracture Assessment of 304L Stainless Steel Using 3D X-ray Computed Tomographycitations
- 2018Realizing the theoretical stiffness of graphene in composites through confinement between carbon fiberscitations
- 2017Degradation of metallic materials studied by correlative tomographycitations
- 2017Time-lapse lab-based X-ray nano-CT study of corrosion damagecitations
- 2017Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steelcitations
- 2016Xe+ Plasma FIB: 3D Microstructures from Nanometers to Hundreds of Micrometerscitations
- 2015Large volume serial section tomography by Xe Plasma FIB dual beam microscopycitations
- 2014Correlative tomographycitations
- 2013Simultaneous measurement of X-ray powder diffraction and ferroelectric polarisation data as a function of applied electric field at a range of frequenciescitations
Places of action
Organizations | Location | People |
---|
article
Computational study of the geometrical influence of grain topography on short crack propagation in AA7XXX series alloys
Abstract
Intergranular Environmentally-Assisted Cracking (EAC) has recently been reported to be an issue of concern in<br/>new-generation 7000 series aluminium alloys, such as AA7085, when exposed to humid air. The cracking process<br/>occurs in a highly brittle manner almost exclusively along grain boundaries (GB’s) and has been attributed to<br/>hydrogen embrittlement, probably by GB decohesion within the stress field at the crack tip. Currently, how the<br/>highly heterogeneous grain structures found in these partially recrystallized materials impact the growth behaviour<br/>of microstructurally short cracks is poorly understood. In particular, there is expected to be a high sensitivity to<br/>the grain structure in the transition from initiation to sustained propagation, where the local mechanical driving<br/>force is very sensitive to the crack path. Volume Elements, VE's, with synthetic grain structures have been<br/>generated from real microstructure and texture data, so that the effects of important grain structure variables can<br/>be explored in crystal-plasticity simulations, to understand the extent to which typical grain-structural features<br/>affect the driving force for short-crack growth. Specifically, by considering the effect of different uncrystallised<br/>grain aspect ratios and embedding recrystallised grains in the model, the strain energy release rate has been<br/>calculated as a function of crack path. This has revealed large reductions and fluctuations in the driving force for<br/>short cracks in relation to the local grain structure encountered by the crack tip, which have been estimated by the<br/>model.