Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ebner, Sandra

  • Google
  • 2
  • 6
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Influence of partitioning parameters on the mechanical stability of austenite in a Q&P steel: A comparative in-situ study16citations
  • 2020Characterization of carbides in Q&P steels using a combination of high-resolution methods19citations

Places of action

Chart of shared publication
Suppan, Clemens
2 / 3 shared
Schnitzer, Ronald
2 / 59 shared
Maawad, Emad
1 / 59 shared
Hofer, Christina
2 / 18 shared
Stark, Andreas
1 / 148 shared
Liu, Hongwei
1 / 4 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Suppan, Clemens
  • Schnitzer, Ronald
  • Maawad, Emad
  • Hofer, Christina
  • Stark, Andreas
  • Liu, Hongwei
OrganizationsLocationPeople

article

Influence of partitioning parameters on the mechanical stability of austenite in a Q&P steel: A comparative in-situ study

  • Suppan, Clemens
  • Schnitzer, Ronald
  • Maawad, Emad
  • Ebner, Sandra
  • Hofer, Christina
Abstract

The transformation-induced plasticity (TRIP)-effect is an efficient way to increase the formability in high performance steels. Hence, an optimal stability of the retained austenite is crucial to benefit the most from this effect. In the present work, in-situ high energy X-ray diffraction was used to study the austenite to martensite transformation upon uniaxial tensile loading of a TRIP-assisted steel produced by the quenching and partitioning (Q&P) process. A detailed analysis of the diffraction patterns recorded during deformation allowed to study the austenite stability with respect to the applied partitioning conditions. The austenite stability was found to strongly depend on the applied heat treatment, and could be mainly attributed to the carbon content and to the tempering degree of the surrounding martensitic matrix. Partitioning at 260 °C resulted in a poor austenite stability, while the austenite was almost too stable after partitioning at 360 °C. The optimal combination of strength and ductility was found for partitioning at 400 °C.The micromechanical behavior was analyzed by the evolution of individual lattice strains and the change of full width at half maximum (FWHM). Yielding of austenite could be clearly identified by an increase of FWHM. Martensite showed an unexpected peak narrowing upon yielding. In the case of 2-step Q&P, austenite started to yield after martensite, while yielding occurred almost simultaneously in the case of 1-step Q&P.

Topics
  • impedance spectroscopy
  • Carbon
  • x-ray diffraction
  • strength
  • steel
  • plasticity
  • ductility
  • quenching
  • carbon content
  • tempering