Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Deepak

  • Google
  • 17
  • 98
  • 296

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2024Tuning thermal and structural properties of nano‐filled <scp>PDMS</scp> elastomer2citations
  • 2024Exploring enhanced structural and dielectric properties in Ag-Doped Sr(NiNb) 0.5 O 3 perovskite ceramic for advanced energy storage8citations
  • 2023Manufacturing of aluminium metal matrix composites by high pressure torsion.citations
  • 2023Effect of nanoscale interface modification on residual stress evolution during composite processing6citations
  • 2023Wear behavior of bare and coated 18Cr8Ni turbine steel exposed to sediment erosion: A comparative analysis4citations
  • 2023Metal‐based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy40citations
  • 2022The progress and roadmap of metal–organic frameworks for high-performance supercapacitors84citations
  • 2022ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging12citations
  • 2021New Insight into the development of deformation texture in face-centered cubic materialcitations
  • 2021Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy16citations
  • 2021Microstructural anisotropy in Electron Beam Melted 316L stainless steelscitations
  • 2020Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy18citations
  • 2020Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy18citations
  • 2020Tip Induced Growth of Zinc Oxide Nanoflakes Through Electrochemical Discharge Deposition Process and Their Optical Characterizationcitations
  • 2019Thin film growth by combinatorial epitaxy for electronic and energy applications ; Croissance de couches minces par épitaxie combinatoire pour applications énergétiques et électroniquescitations
  • 2016POLYVINYL BUTYRAL (PVB), VERSETILE TEMPLATE FOR DESIGNING NANOCOMPOSITE/COMPOSITE MATERIALS:A REVIEW42citations
  • 2014Soft Colloidal Scaffolds Capable of Elastic Recovery after Large Compressive Strains46citations

Places of action

Chart of shared publication
Rizwee, Mumtaz
1 / 1 shared
Kumar, Rahul
1 / 8 shared
Mandal, Swaroop Kumar
1 / 1 shared
Tayari, Faouzia
1 / 4 shared
Graça, M. P. F.
1 / 15 shared
Teixeira, S. Soreto
1 / 4 shared
Thakur, Priyanka
1 / 1 shared
Nassar, Kais Iben
1 / 4 shared
Essid, Manel
1 / 4 shared
Benamara, Majdi
1 / 7 shared
Lal, Madan
1 / 1 shared
Al-Haik, Marwan
1 / 1 shared
Dusabimana, Marie Claire
1 / 1 shared
Namilae, Sirish
1 / 2 shared
Gupta, Avi
1 / 1 shared
Goyal, Rahul
1 / 2 shared
Pandey, Ashwin
1 / 1 shared
Shukla, Monu Kumar
1 / 1 shared
Chellappan, Dinesh K.
1 / 1 shared
Singh, Sachin Kumar
1 / 2 shared
Dua, Kamal
1 / 3 shared
Tonk, Rajiv K.
1 / 1 shared
Jayaprakash, Gururaj K.
1 / 1 shared
Sharma, Abhishek Kumar
1 / 1 shared
Bhattacharyya, Sanjib
1 / 1 shared
Ahmed, Faheem
1 / 1 shared
Lokhande, P. E.
1 / 1 shared
Chakrabarti, Sandip
1 / 3 shared
Sharma, Ajit
1 / 1 shared
Toncu, Dana Cristina
1 / 1 shared
Singh, Jashanpreet
1 / 2 shared
Tiwari, Ashutosh
1 / 5 shared
Kulkarni, Sahana
1 / 1 shared
Pathan, H. M.
1 / 1 shared
Sindhu, Monika
1 / 1 shared
Kumar, Anupam
1 / 2 shared
Kumar Mishra, Yogendra
1 / 3 shared
Syväjärvi, Mikael
1 / 12 shared
Suwas, Satyam
2 / 21 shared
Jain, Jayant
3 / 13 shared
Yeh, An Chou
1 / 6 shared
Chang, Yao Jen
1 / 6 shared
Meena, Durgesh K.
1 / 1 shared
Jaishri, B.
1 / 1 shared
Neelakantan, Suresh
1 / 8 shared
Gosvami, Nitya Nand
3 / 7 shared
Goel, Saurav
1 / 50 shared
Bajpai, Vivek
1 / 2 shared
Bishwakarma, Harish
1 / 1 shared
Kumar, Mohan
1 / 2 shared
Singh, Nirmal Kumar
1 / 1 shared
Khan, Nida
1 / 1 shared
Kumar, Pramendra
1 / 1 shared
Kumar, Sushma
1 / 1 shared
Rajamanickam, Raja
1 / 1 shared
Kumaraswamy, Guruswamy
1 / 3 shared
Sen Gupta, Sayam
1 / 1 shared
Tae, Giyoong
1 / 5 shared
Kim, Jong Chul
1 / 1 shared
Ghosh, Shankar
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2016
2014

Co-Authors (by relevance)

  • Rizwee, Mumtaz
  • Kumar, Rahul
  • Mandal, Swaroop Kumar
  • Tayari, Faouzia
  • Graça, M. P. F.
  • Teixeira, S. Soreto
  • Thakur, Priyanka
  • Nassar, Kais Iben
  • Essid, Manel
  • Benamara, Majdi
  • Lal, Madan
  • Al-Haik, Marwan
  • Dusabimana, Marie Claire
  • Namilae, Sirish
  • Gupta, Avi
  • Goyal, Rahul
  • Pandey, Ashwin
  • Shukla, Monu Kumar
  • Chellappan, Dinesh K.
  • Singh, Sachin Kumar
  • Dua, Kamal
  • Tonk, Rajiv K.
  • Jayaprakash, Gururaj K.
  • Sharma, Abhishek Kumar
  • Bhattacharyya, Sanjib
  • Ahmed, Faheem
  • Lokhande, P. E.
  • Chakrabarti, Sandip
  • Sharma, Ajit
  • Toncu, Dana Cristina
  • Singh, Jashanpreet
  • Tiwari, Ashutosh
  • Kulkarni, Sahana
  • Pathan, H. M.
  • Sindhu, Monika
  • Kumar, Anupam
  • Kumar Mishra, Yogendra
  • Syväjärvi, Mikael
  • Suwas, Satyam
  • Jain, Jayant
  • Yeh, An Chou
  • Chang, Yao Jen
  • Meena, Durgesh K.
  • Jaishri, B.
  • Neelakantan, Suresh
  • Gosvami, Nitya Nand
  • Goel, Saurav
  • Bajpai, Vivek
  • Bishwakarma, Harish
  • Kumar, Mohan
  • Singh, Nirmal Kumar
  • Khan, Nida
  • Kumar, Pramendra
  • Kumar, Sushma
  • Rajamanickam, Raja
  • Kumaraswamy, Guruswamy
  • Sen Gupta, Sayam
  • Tae, Giyoong
  • Kim, Jong Chul
  • Ghosh, Shankar
OrganizationsLocationPeople

article

Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy

  • Jain, Jayant
  • Gosvami, Nitya Nand
  • Kumar, Deepak
Abstract

<p>This work reports a combined experimental and atomistic simulation study on continuous precipitates (CPs) and discontinuous precipitates (DPs) affecting the scratch induced wear in AZ91 magnesium alloy. Nanoscratching experiments complemented by atomic simulations were performed to understand the directional dependence and origins of plasticity, friction and wear mechanisms in AZ91 alloys with reference to nanocrystalline HCP magnesium. Post scratch deformation analysis was performed using electron back scattering diffraction, scanning electron microscope and molecular dynamics (MD) simulation. The direction of orientation of the precipitates was observed to make a significant influence on the deformation behaviour. For example, regardless of the precipitates type (CP or DP), a ductile-brittle transition becomes pronounced while scratching along the longitudinal direction of precipitates, whilst a fully ductile response was obtained while scratching along the transverse direction of the precipitates. However, regardless of the direction of orientation, DPs showed a higher wear resistance and coefficient of friction compared to the CPs. These observations were supported by the quantitative analysis of the planar defects such as coherent twins, extrinsic and intrinsic stacking faults in the deformation zone as well as types 1/3〈11¯00〉 and 1/3〈12¯10〉 dislocations extracted from the MD data.These observations will facilitate an improved design of AZ91 alloys in particular and intermetallic precipitate containing alloys in general.</p>

Topics
  • experiment
  • simulation
  • Magnesium
  • magnesium alloy
  • Magnesium
  • molecular dynamics
  • wear resistance
  • dislocation
  • precipitate
  • plasticity
  • intermetallic
  • quantitative determination method
  • stacking fault
  • coefficient of friction