Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vaid, Aviral

  • Google
  • 4
  • 13
  • 113

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Atomistic Simulations of Dislocation-Void Interactions in Concentrated Solid Solution Alloyscitations
  • 2022Pinning of extended dislocations in atomically disordered crystals17citations
  • 2020In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops55citations
  • 2019Atomistic Simulations of Basal Dislocations Interacting with Mg$_{17}$Al$_{12}$ Precipitates in Mg41citations

Places of action

Chart of shared publication
Bitzek, Erik
4 / 69 shared
Nasiri, Samaneh
1 / 2 shared
Wei, Dean
1 / 1 shared
Zaiser, Michael
1 / 16 shared
Guénolé, Julien
2 / 22 shared
Im, Jiseong
1 / 1 shared
Lee, Subin
1 / 10 shared
Kiener, Daniel
1 / 39 shared
Kim, Bongsoo
1 / 1 shared
Oh, Sang Ho
1 / 6 shared
Prakash, Arun
1 / 2 shared
Korte-Kerzel, Sandra
1 / 20 shared
Prakash, Aruna
1 / 5 shared
Chart of publication period
2023
2022
2020
2019

Co-Authors (by relevance)

  • Bitzek, Erik
  • Nasiri, Samaneh
  • Wei, Dean
  • Zaiser, Michael
  • Guénolé, Julien
  • Im, Jiseong
  • Lee, Subin
  • Kiener, Daniel
  • Kim, Bongsoo
  • Oh, Sang Ho
  • Prakash, Arun
  • Korte-Kerzel, Sandra
  • Prakash, Aruna
OrganizationsLocationPeople

article

Atomistic Simulations of Basal Dislocations Interacting with Mg$_{17}$Al$_{12}$ Precipitates in Mg

  • Vaid, Aviral
  • Korte-Kerzel, Sandra
  • Prakash, Aruna
  • Guénolé, Julien
  • Bitzek, Erik
Abstract

13 pages with 9 figures and 2 tables. Supplementary material ; International audience ; The mechanical properties of Mg-Al alloys are greatly influenced by the complex intermetallic phase Mg$_{17}$Al$_{12}$, which is the most dominant precipitate found in this alloy system. The interaction of basal edge and 30$^{o}$ dislocations with Mg$_{17}$Al$_{12}$ precipitates is studied by molecular dynamics and statics simulations, varying the inter-precipitate spacing ($L$), and size ($D$), shape and orientation of the precipitates. The critical resolved shear stressto pass an array of precipitates follows the usual $((1/D + 1/L)^{-1})$ proportionality. In all cases but the smallest precipitate, the dislocations pass the obstacles by depositing dislocation segments in the disordered interphase boundary rather than shearing the precipitate or leaving Orowan loops in the matrix around the precipitate. An absorbed dislocation increases the stress necessary for a second dislocation to pass the precipitate also by absorbing dislocation segments into the boundary. Replacing the precipitate with a void of identical size and shape decreases the critical passing stress and work hardening contribution while an artificially impenetrable Mg$_{17}$Al$_{12}$ precipitate increases both. These insights will help improve mesoscale models of hardening by incoherent particles.

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • Magnesium
  • magnesium alloy
  • Magnesium
  • molecular dynamics
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • dislocation
  • precipitate
  • precipitation
  • void
  • intermetallic