Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Juul, Kristian Jørgensen

  • Google
  • 2
  • 8
  • 24

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Grain-size affected mechanical response and deformation behavior in microscale reverse extrusion17citations
  • 2018A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals7citations

Places of action

Chart of shared publication
Nielsen, Kl
2 / 42 shared
Ahmed, Shahrior
1 / 1 shared
Dodaran, Mohammad
1 / 1 shared
Zhang, Bin
1 / 9 shared
Meng, W. J.
1 / 1 shared
Shao, Shuai
1 / 5 shared
Niordson, Christian Frithiof
1 / 52 shared
Kysar, J. W.
1 / 4 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Nielsen, Kl
  • Ahmed, Shahrior
  • Dodaran, Mohammad
  • Zhang, Bin
  • Meng, W. J.
  • Shao, Shuai
  • Niordson, Christian Frithiof
  • Kysar, J. W.
OrganizationsLocationPeople

article

Grain-size affected mechanical response and deformation behavior in microscale reverse extrusion

  • Nielsen, Kl
  • Juul, Kristian Jørgensen
  • Ahmed, Shahrior
  • Dodaran, Mohammad
  • Zhang, Bin
  • Meng, W. J.
  • Shao, Shuai
Abstract

The continuing demand on device miniaturization has motivated the interest in micro metal forming technologies for manufacturing metal parts with sub-mm characteristic dimensions. In this work, axisymmetric reverse extrusion experiments were conducted on Cu 110 and Al 1100 alloy rod specimens with widely varying initial grain sizes, achieved through equal channel angular pressing (ECAP) and post annealing. Accompanying crystal plasticity finite element (CPFE) simulations were carried out. At a characteristic extrusion dimension (CED) of ∼100 µm, defined by the sidewall thickness of the extruded cup-shaped structures, the deformation characteristics of the reverse extrusion process were investigated. Specifically, the characteristic plastic strain for extrusion and the influence of initial grain size on the extrusion mechanical response and shape of extruded parts were examined in detail through scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), in combination with CPFE simulations. The mechanical response of extrusion showed deviations from continuum scaling behavior as the CED became small as compared to the initial grain size. The present study serves as a baseline for further studies of metal forming at the meso to micro scales.

Topics
  • polymer
  • grain
  • grain size
  • scanning electron microscopy
  • experiment
  • simulation
  • extrusion
  • annealing
  • plasticity
  • electron backscatter diffraction
  • crystal plasticity