People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lyytikäinen, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Surface doping of GaxIn1−xAs semiconductor crystals with magnesium
Abstract
Effects of magnesium (Mg) alloying of GaxIn1−xAs(100) semiconductor surfaces have been investigated by low-energy electron diffraction, scanning tunneling microscopy/spectroscopy, and responsivity analysis of an infrared-detector component. In particular, the formation of an unusual Mg-induced (2 × 1) structure on GaAs(100) surfaces is found when depositing 1–3 monolayers of Mg on a cleaned GaAs(100) surface followed by annealing the sample in vacuum conditions at up to 500 °C. Concomitantly, the spectroscopy data show that the Fermi-level shifts toward valence band at the surface, indicating p-type doping of a surface part of GaAs due to Mg incorporation into the semiconductor. This surface-doping effect is also present in a test GaxIn1−xAs infrared detector, leading to increase in the detector responsivity. This beneficial effect of Mg-induced p-type doping is explained by a band-bending induced transfer of electrons away from a defect-rich top interface.