Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martinez, E.

  • Google
  • 12
  • 72
  • 361

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2023A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments76citations
  • 2021Helium implantation damage resistance in nanocrystalline W-Ta-V-Cr high entropy alloys66citations
  • 2020Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments18citations
  • 2018Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt/Co/AuxPt1-x trilayerscitations
  • 2018Role of the Sink Density in Non-Equilibrium Chemical Redistribution in Binary Alloys25citations
  • 2018Role of the Sink Density in Non-Equilibrium Chemical Redistribution in Binary Alloys25citations
  • 2017Progress update on lower length scale research and development on U3Si2 fuel and FeCrAl claddingcitations
  • 2017Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium21citations
  • 2014Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism56citations
  • 2007Nanoembossed polymer substrates for biomedical surface interaction studies.11citations
  • 2006Influence of electron-beam and ultraviolet treatments on low-k porous dielectrics27citations
  • 2006Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications36citations

Places of action

Chart of shared publication
Nguyen-Manh, Duc
1 / 11 shared
Wróbel, Jan S.
1 / 9 shared
Wang, Yongqiang
1 / 4 shared
Fensin, S.
2 / 3 shared
Baldwin, J. K. S.
2 / 3 shared
Tukac, O. U.
1 / 3 shared
Vo, H. T.
1 / 2 shared
Li, M.
1 / 37 shared
Gigax, J.
1 / 2 shared
Krienke, N.
1 / 2 shared
Lee, C.
1 / 8 shared
Aydogan, E.
1 / 3 shared
Chen, W.-Y.
1 / 1 shared
Tunes, Matheus Araujo
1 / 34 shared
Hinks, Jonathan
1 / 14 shared
Unal, K.
1 / 1 shared
Maloy, S. A.
1 / 6 shared
Greaves, Graeme
1 / 26 shared
El-Atwani, O.
1 / 4 shared
Alvarado, A.
1 / 1 shared
Nguyen-Manh, D.
1 / 17 shared
Bagot, Paj
1 / 26 shared
Moody, Mp
1 / 32 shared
Armstrong, Dej
1 / 24 shared
Abernethy, Rg
1 / 1 shared
Lloyd, Mj
1 / 4 shared
Moore, Ta
1 / 5 shared
Jeudy, V.
1 / 7 shared
Ward, Mb
1 / 4 shared
Moretti, S.
1 / 4 shared
Hrabec, A.
1 / 2 shared
Marrows, Ch
1 / 10 shared
Shahbazi, K.
1 / 1 shared
B., P. Uberuaga
1 / 1 shared
Caro, A.
3 / 4 shared
Soisson, F.
3 / 6 shared
Nastar, M.
3 / 7 shared
Senninger, Oriane
2 / 7 shared
Uberuaga B., P.
1 / 1 shared
Senninger, O.
1 / 2 shared
Cooper, M.
1 / 4 shared
Baskes, Michael
1 / 1 shared
Beeler, Benjamin
1 / 2 shared
Jiang, Chao
1 / 3 shared
Ahmed, K.
1 / 1 shared
Aagesen, Larry
1 / 2 shared
Zhang, Yongfeng
1 / 3 shared
Yu, J.
1 / 14 shared
Andersson, D.
1 / 4 shared
Schwen, D.
1 / 1 shared
Srinivasan, S. G.
1 / 1 shared
Karewar, S. V.
1 / 3 shared
Groh, S.
1 / 4 shared
Gupta, N.
1 / 8 shared
Brechet, Y.
1 / 47 shared
Wahlbrink, T.
1 / 2 shared
Moormann, C.
1 / 1 shared
Samitier, J.
2 / 2 shared
Engel, E.
2 / 25 shared
Funes, M.
1 / 1 shared
Mills, Ca
1 / 2 shared
Errachid, A.
2 / 5 shared
Gomila, G.
1 / 1 shared
Planell, J.
2 / 9 shared
Guedj, Cyril
1 / 9 shared
Licitra, C.
1 / 5 shared
Friec, Y. Le
1 / 1 shared
Imbert, G.
1 / 2 shared
Rochat, N.
1 / 10 shared
Mills, C. A.
1 / 3 shared
Navarro, M.
1 / 28 shared
Ginebra, Mp
1 / 289 shared
Chart of publication period
2023
2021
2020
2018
2017
2014
2007
2006

Co-Authors (by relevance)

  • Nguyen-Manh, Duc
  • Wróbel, Jan S.
  • Wang, Yongqiang
  • Fensin, S.
  • Baldwin, J. K. S.
  • Tukac, O. U.
  • Vo, H. T.
  • Li, M.
  • Gigax, J.
  • Krienke, N.
  • Lee, C.
  • Aydogan, E.
  • Chen, W.-Y.
  • Tunes, Matheus Araujo
  • Hinks, Jonathan
  • Unal, K.
  • Maloy, S. A.
  • Greaves, Graeme
  • El-Atwani, O.
  • Alvarado, A.
  • Nguyen-Manh, D.
  • Bagot, Paj
  • Moody, Mp
  • Armstrong, Dej
  • Abernethy, Rg
  • Lloyd, Mj
  • Moore, Ta
  • Jeudy, V.
  • Ward, Mb
  • Moretti, S.
  • Hrabec, A.
  • Marrows, Ch
  • Shahbazi, K.
  • B., P. Uberuaga
  • Caro, A.
  • Soisson, F.
  • Nastar, M.
  • Senninger, Oriane
  • Uberuaga B., P.
  • Senninger, O.
  • Cooper, M.
  • Baskes, Michael
  • Beeler, Benjamin
  • Jiang, Chao
  • Ahmed, K.
  • Aagesen, Larry
  • Zhang, Yongfeng
  • Yu, J.
  • Andersson, D.
  • Schwen, D.
  • Srinivasan, S. G.
  • Karewar, S. V.
  • Groh, S.
  • Gupta, N.
  • Brechet, Y.
  • Wahlbrink, T.
  • Moormann, C.
  • Samitier, J.
  • Engel, E.
  • Funes, M.
  • Mills, Ca
  • Errachid, A.
  • Gomila, G.
  • Planell, J.
  • Guedj, Cyril
  • Licitra, C.
  • Friec, Y. Le
  • Imbert, G.
  • Rochat, N.
  • Mills, C. A.
  • Navarro, M.
  • Ginebra, Mp
OrganizationsLocationPeople

article

Helium implantation damage resistance in nanocrystalline W-Ta-V-Cr high entropy alloys

  • Baldwin, J. K. S.
  • Hinks, Jonathan
  • Martinez, E.
  • Unal, K.
  • Maloy, S. A.
  • Fensin, S.
  • Greaves, Graeme
  • El-Atwani, O.
  • Alvarado, A.
Abstract

<p>Nanocrystalline W-Ta-Cr-V high entropy alloys have shown promising properties as nuclear fusion materials with enhanced radiation resistance to heavy ion irradiation and negligible radiation hardening. In this work, we investigate the performance of the alloy under low energy helium (He) implantation up to a fluence of 1.25 × 10<sup>17</sup> cm<sup>−2</sup> at 1223 K. We observe a uniform high density of very small (~2–3 nm) bubbles grown at a slow rate along with enhanced He bubble damage resistance, further marked by no preferential bubble formation on the grain boundaries, even at much higher fluences compared to previously implanted tungsten grades. First principle calculations of He formation and migration energies in this alloy indicate deep energetic wells on the potential landscape and low diffusivity of He compared to pure W. The results imply higher overall (considering both grain matrices and grain boundaries) implantation resistance due to slow He diffusion and accumulation, and confirm the enhanced vacancy-self interstitial recombination argument in these alloys.</p>

Topics
  • density
  • grain
  • interstitial
  • tungsten
  • diffusivity
  • vacancy