Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ma, Mohin

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Improved corrosion and cavitation erosion resistance of laser-based powder bed fusion produced Ti-6Al-4V alloy by pulsed magnetic field treatment3citations

Places of action

Chart of shared publication
Chrysanthou, Andreas
1 / 23 shared
Akram, Sufyan
1 / 15 shared
Randviir, Edward
1 / 1 shared
Doyle, Aidan M.
1 / 4 shared
Babutskyi, Anatolii
1 / 13 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Chrysanthou, Andreas
  • Akram, Sufyan
  • Randviir, Edward
  • Doyle, Aidan M.
  • Babutskyi, Anatolii
OrganizationsLocationPeople

document

Improved corrosion and cavitation erosion resistance of laser-based powder bed fusion produced Ti-6Al-4V alloy by pulsed magnetic field treatment

  • Chrysanthou, Andreas
  • Akram, Sufyan
  • Randviir, Edward
  • Doyle, Aidan M.
  • Babutskyi, Anatolii
  • Ma, Mohin
Abstract

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/ ; The application of pulsed magnetic field (PMF) treatment demonstrated enhanced corrosion resistance in saline solution and prolonged resistance to cavitation erosion in deionised water for Ti-6AI-4V alloy manufactured by laser-based powder bed fusion (LPBF) and conventional wrought processing methods. The observed outcomes were attributed to the formation of a denser protective surface oxide layer and microstructural changes, resulting in a reduction of the α’ phase by 0.13% and an increase in the presence of dislocations at the surface. Consequently, this led to an increase in the compressive residual stresses. Additionally, the application of this treatment resulted in the formation of highly refined and uniform precipitates, leading to a notable enhancement in microhardness by 5.73% and 5.85% for the conventionally manufactured (CM) and LPBF samples, respectively. ; Peer reviewed

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • phase
  • dislocation
  • precipitate
  • powder bed fusion