People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hyttinen, Jari Aarne Kalevi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatitecitations
- 2023Improvements in Maturity and Stability of 3D iPSC-Derived Hepatocyte-like Cell Culturescitations
- 2023Hydrolytic degradation of polylactide/polybutylene succinate blends with bioactive glasscitations
- 2021Retrieval of the conductivity spectrum of tissues in vitro with novel multimodal tomographycitations
- 2020Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based toolscitations
- 2020A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samplescitations
- 2017Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineeringcitations
- 2017In vitro degradation of borosilicate bioactive glass and poly(L-lactide-co-ε-caprolactone) composite scaffoldscitations
- 2016Texture descriptors ensembles enable image-based classification of maturation of human stem cell-derived retinal pigmented epitheliumcitations
- 2016X-ray microtomography of collagen and polylactide samples in liquidscitations
- 2015μCT based assessment of mechanical deformation of designed PTMC scaffoldscitations
Places of action
Organizations | Location | People |
---|
article
Hydrolytic degradation of polylactide/polybutylene succinate blends with bioactive glass
Abstract
Polylactides (PLAs) have been vastly studied for biomedical engineering applications, but their rigidness limits their use. Blending them with more flexible polymers, such as polybutylene succinate (PBSu), results in softer materials, expanding the range of possible applications. However, the biopolymers lack bioactivity, which can be overcome by adding bioactive glass. Combining the inorganic phase with the organic phase (especially with blends) results in a complex material. Therefore, understanding the hydrolytic degradation of each component is crucial. In this context, we report on processing polylactide and polybutylene succinate (PLA/PBSu) blends and their composites (30 wt% of bioactive glass 13-93, BaG). The impact of blending and compounding with BaG on the final product’s molecular weight and mechanical properties and the BaG dispersion in the polymer matrices was assessed. In addition, in vitro degradation in PBS was studied. While the degradation of the polymer was assessed by GPC, the BaG dissolution was quantified by ICP-OES. Blending decreased the initial mechanical properties and molecular weight, and compounding with BaG further decreased the initial mechanical properties. During the immersion in PBS, blending accelerated the loss of mechanical properties and molecular weight, while BaG accelerated the degradation of PLA-containing materials but had little effect on PBSu. Blending and compounding with BaG enabled us to produce materials with a wide range of mechanical properties: bending strength of 34–125 MPa, shear strength of 22–47 MPa and bending modulus of 1.1–3.9 GPa. The selection of tailorable properties of these polymer/BaG composites enables their application for tissue engineering of bone to soft tissue. ; Peer reviewed