People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferraz, Franz Miller Branco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024A comprehensive mean-field approach to simulate the microstructure during the hot forming of Ti-17citations
- 2024A predictive mesoscale model for continuous dynamic recrystallizationcitations
- 2023Microstructure refinement of a cast high entropy alloy by thermomechanical treatmentscitations
- 2023Thermomechanical treatments for a dual phase cast high entropy alloycitations
- 2023Metamodelling the hot deformation behaviour of titanium alloys using a mean-field approachcitations
- 2023Hot deformation mechanisms of dual phase high entropy alloyscitations
- 2020Improved Predictability of Microstructure Evolution during Hot Deformation of Titanium Alloyscitations
- 2020Characterization and modelling the flow localization in titanium alloys during hot forming
Places of action
Organizations | Location | People |
---|
article
Metamodelling the hot deformation behaviour of titanium alloys using a mean-field approach
Abstract
<p>During the thermomechanical processing of titanium alloys in the β-domain, the β-phase undergoes restoration phenomena. This work describes them by a mean-field physical model that correlates the flow stress with the microstructural evolution. To reduce the computational time of process simulations, metamodels are developed for specific outputs of the mean-field physical model using Artificial Neural Network (ANN) and Decision Tree Regression (DTR). The performance of the obtained metamodels is evaluated in terms of the coefficient of determination (R²), the root-mean-square error (RMSE), and the mean relative error (MRE). No significant difference was observed between R<sup>2</sup><sub>training</sub> and R<sup>2</sup><sub>testing</sub>, meaning that all the metamodels correctly generalise the overall behaviour of the outputs for a wide range of inputs. The evolution of the metamodel outputs is compared with the model predictions in two different situations: 1) at a constant strain rate and temperature, and 2) during Finite Element (FE) simulations of the hot deformation of a hat-shaped sample, where temperature and effective strain rate vary at each element during deformation. The evolution of the outputs at constant and non-constant strain rates and temperature demonstrated the robustness of the metamodels in predicting the heterogeneous deformation within a workpiece. The computational time required by the metamodels to calculate selected outputs can be more than 100 times less than that of the model itself at a constant strain rate using MATLAB® and up to 19% less when coupled with FE simulations. The simulation results combined with microstructural analysis are used to visualise the different restoration mechanisms occurring in different regions of the hat-shaped sample as a function of the local thermomechanical history. The changes in strain rate and temperature during deformation influence the evolution of the wall dislocation density and the immobilisation rate of mobile dislocations at subgrain boundaries, leading to different kinetics of microstructure evolution.</p>