People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pixner, Florian
Austrian Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Thermal cycling effects on the local microstructure and mechanical properties in wire-based directed energy deposition of nickel-based superalloycitations
- 2024Physical Simulation of microstructures generated by wire-arc directed energy deposition
- 2024Welding of S1100 Ultra high-Strength Steel Plates with Matching Metal-Cored Filler Wirecitations
- 2023Influence of process and heat input on the microstructure and mechanical properties in wire arc additive manufacturing of hot work tool steelscitations
- 2023Application of electron beam welding technique for joining coarse-grained and ultrafine-grained plates from Al-Mg-Si alloycitations
- 2023Microstructure and texture characterisation of friction stir welded CoCrNi and CoCrFeMnNi multi-principle element alloyscitations
- 2023Microstructure characterisation of multi-principal element alloys welds produced by electron beam weldingcitations
- 2022Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloycitations
- 2022Directed energy deposition processes and process design by artificial intelligencecitations
- 2022Tailoring the alloy composition for wire arc additive manufacturing utilizing metal-cored wires in the cold metal transfer processcitations
- 2022Mechanical and microstructural properties of S1100 UHSS welds obtained by EBW and MAG weldingcitations
- 2022Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processingcitations
- 2022Wire-based electron beam additive manufacturing of tungstencitations
- 2021Residual Stresses, Microstructure, and Mechanical Properties of Electron Beam Welded Thick S1100 Steelcitations
- 2020Wire-Based Additive Manufacturing of Ti-6Al-4V Using Electron Beam Techniquecitations
- 2019Influence of the focus wobbling technique on the integrity and the properties of electron beam welded MarBN steelcitations
- 2019Improving the integrity and the microstructural features of electron beam welds of a creep-resistant martensitic steel by local (de-)alloyingcitations
- 2019Microstructure development of molybdenum during rotary friction weldingcitations
- 20194-D Printing of NiTi Shape Memory Alloys
Places of action
Organizations | Location | People |
---|
article
Microstructure and texture characterisation of friction stir welded CoCrNi and CoCrFeMnNi multi-principle element alloys
Abstract
This work investigates the microstructure formed in friction stir welds of FCC alloys, focused on two multiprincipal alloys: a CoCrFeMnNi high-entropy alloy (HEA) and a CoCrNi medium-entropy alloy (MEA). A commercial stainless steel AISI 304 is used for comparison. The largest nugget was formed in the MEA, while the smallest was formed in the HEA. Grain refinement occurs in the stirred zone in all welds. Discontinuous dynamic recrystallisation is the predominant restoration mechanism during friction stir welding of the three investigated alloys. A sharp decrement in the Σ3 boundary fraction occurs in the stirred zone of the AISI 304 and HEA welds, while comparable values with the base metal are found for the MEA weld. The peak in the maximum index of crystallographic texture is observed on the advancing side of the stirred zone of the AISI 304 weld. A strong <001> θ-fibre texture is formed in the advancing side of the nugget in the AISI 304 from a well-established {123} <634> S-type texture in the base metal. Multiple crystallographic texture components without specific fibres are identified in most regions of the welds, indicating the complex shear path history during friction stir welding.