People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharma, Prashant K.
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Modulating the water behavior, microstructure, and viscoelasticity of plasma-derived hydrogels by adding silica nanoparticles with tailored chemical and colloidal propertiescitations
- 2022Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applicationscitations
- 2021Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubulescitations
- 2019Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structurecitations
- 2019Chemical efficacy of several NaOCl concentrations on biofilms of different architecturecitations
- 2019Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady-state dual-species biofilmscitations
- 2018Notochordal cell matrix as a bioactive lubricant for the osteoarthritic jointcitations
- 2017Implant Failurecitations
- 2013Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilmscitations
- 2013A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilmscitations
- 2009Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots
- 2009Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steelcitations
- 2009Hyphal content determines the compression strength of Candida albicans biofilmscitations
- 2008Physicochemical and microbial fouling characterization of novel, extremely hydrophobic, nanocomposite diamond like carbon polymer hybrid coatings
- 2007Low-load compression testingcitations
- 2007Low-load compression testing:a novel way of measuring biofilm thicknesscitations
- 2001Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide mineralscitations
Places of action
Organizations | Location | People |
---|
article
Modulating the water behavior, microstructure, and viscoelasticity of plasma-derived hydrogels by adding silica nanoparticles with tailored chemical and colloidal properties
Abstract
The viscoelastic properties of hydrogels depend on the tridimensional polymeric structure and the behavior of the liquid confined in their pores. The objective here is to modulate these characteristics in plasma-derived hydrogels by the addition of glycidoxypropyl-silica nanoparticles. These nanoparticles exhibited a hydrodynamic average size between 105.4 − 151.0 nm and surface coverage with (3-Glycidoxypropyl) trimethoxysilane of 0–96 %. The reinforced hydrogels are porous networks with spherical nanoparticles homogeneously distributed into their walls. The silanol groups of silica increase four-fold humidity retention compared with the native hydrogel. This correlates with bound water > 45 % on these reinforced hydrogels, in contrast with 75 % of free water on the native one (calculated from DSC in frozen hydrogels). The humidity stability can be also achieved in the hydrogel prepared with nanoparticles exhibiting 96 % organic coverage. Furthermore, this organic content promotes the microstructure chemical crosslinking, resulting in 3.9 and 1.6 higher Young's modulus compared with native and silica-reinforced hydrogels, respectively. The presence of glycidoxypropyl-silica nanoparticles in reinforced hydrogels modulated its viscoelasticity behavior, decreasing stress relaxation, which was explained using the generalized Maxwell-Wiechert model. In conclusion, novel organic-inorganic hybrid hydrogels based on plasma-derived ones and glycidoxypropyl-silica nanoparticles were developed. These nanoparticles are versatile and allow the production of hydrogels with improved viscoelastic behavior that also exhibits high water retention and morphological stability.