Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bespalova, Kristina

  • Google
  • 8
  • 27
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabrication4citations
  • 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMS6citations
  • 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS4citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabrication16citations
  • 2021Atomic layer deposition of AlN using atomic layer annealing - Towards high-quality AlN on vertical sidewalls21citations
  • 2021Effect of crystal structure on the Young's modulus of GaP nanowires4citations

Places of action

Chart of shared publication
Paulasto-Kröckel, Mervi
7 / 31 shared
Ross, Glenn
6 / 35 shared
Suihkonen, Sami
1 / 25 shared
Nieminen, Tarmo
1 / 2 shared
Gabrelian, Artem
1 / 2 shared
Gabrelian, Gabrelian
1 / 1 shared
Karuthedath, Cyril Baby
2 / 8 shared
Mertin, Stefan
3 / 6 shared
Österlund, Elmeri
4 / 8 shared
Pensala, Tuomas
3 / 17 shared
Karuthedath, Cyril
1 / 3 shared
Thanniyil Sebastian, Abhilash
1 / 5 shared
Sebastian, Abhilash Thanniyil
1 / 2 shared
Miikkulainen, Ville
1 / 28 shared
Seppänen, Heli
1 / 6 shared
Cirlin, George E.
1 / 1 shared
Lipsanen, Harri
1 / 65 shared
Alekseev, Prokhor A.
1 / 2 shared
Khayrudinov, Vladislav
1 / 5 shared
Lahderanta, Erkki
1 / 2 shared
Haggren, Tuomas
1 / 11 shared
Dunaevskiy, Mikhail S.
1 / 1 shared
Geydt, Pavel
1 / 3 shared
Kirilenko, Demid A.
1 / 3 shared
Borodin, Bogdan R.
1 / 2 shared
Reznik, Rodion R.
1 / 1 shared
Nashchekin, Alexey
1 / 2 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Paulasto-Kröckel, Mervi
  • Ross, Glenn
  • Suihkonen, Sami
  • Nieminen, Tarmo
  • Gabrelian, Artem
  • Gabrelian, Gabrelian
  • Karuthedath, Cyril Baby
  • Mertin, Stefan
  • Österlund, Elmeri
  • Pensala, Tuomas
  • Karuthedath, Cyril
  • Thanniyil Sebastian, Abhilash
  • Sebastian, Abhilash Thanniyil
  • Miikkulainen, Ville
  • Seppänen, Heli
  • Cirlin, George E.
  • Lipsanen, Harri
  • Alekseev, Prokhor A.
  • Khayrudinov, Vladislav
  • Lahderanta, Erkki
  • Haggren, Tuomas
  • Dunaevskiy, Mikhail S.
  • Geydt, Pavel
  • Kirilenko, Demid A.
  • Borodin, Bogdan R.
  • Reznik, Rodion R.
  • Nashchekin, Alexey
OrganizationsLocationPeople

article

Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS

  • Bespalova, Kristina
  • Paulasto-Kröckel, Mervi
  • Ross, Glenn
  • Gabrelian, Gabrelian
Abstract

Devices based on piezoelectric actuation are some of the most promising among the microelectromechanical systems (MEMS). Commonly, piezoelectric materials, such as aluminum nitride (AlN), are utilized to perform out-of-the-plane motion due to a clear and simple fabrication process. However, in-plane actuation is essential for inertial sensors, such as gyroscopes, where actuation and sensing directions are strongly perpendicular. Moreover, in-plane actuation and sensing can also find applications beyond inertial sensors. This paper presents the finite-element-modeling (FEM) of the MEMS gyroscope with the AlN thin films on vertical sidewalls that demonstrate in-plane actuation and unleash the full potential of piezoelectric AlN MEMS devices. Current work focuses on inertial sensing with the half-fork MEMS gyroscope’s FEM simulation. This device has a significant advantage in scaling, while its output is in a competitive range among existing commercial angular rate sensors. The FEM simulations in COMSOL Multiphysics (COMSOL) allow to measure the angular rate sensitivity and perform further design optimization. Ultimately, this research shows the potential of the AlN sidewall structures in MEMS gyroscopes by optimizing the angular rate sensitivity in the range of [-64.64] degrees per second (dps) with the peak value of 1 mV/dps. ; Peer reviewed

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • simulation
  • aluminium
  • nitride
  • piezoelectric material