People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bespalova, Kristina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabricationcitations
- 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMScitations
- 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMScitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabricationcitations
- 2021Atomic layer deposition of AlN using atomic layer annealing - Towards high-quality AlN on vertical sidewallscitations
- 2021Effect of crystal structure on the Young's modulus of GaP nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS
Abstract
Devices based on piezoelectric actuation are some of the most promising among the microelectromechanical systems (MEMS). Commonly, piezoelectric materials, such as aluminum nitride (AlN), are utilized to perform out-of-the-plane motion due to a clear and simple fabrication process. However, in-plane actuation is essential for inertial sensors, such as gyroscopes, where actuation and sensing directions are strongly perpendicular. Moreover, in-plane actuation and sensing can also find applications beyond inertial sensors. This paper presents the finite-element-modeling (FEM) of the MEMS gyroscope with the AlN thin films on vertical sidewalls that demonstrate in-plane actuation and unleash the full potential of piezoelectric AlN MEMS devices. Current work focuses on inertial sensing with the half-fork MEMS gyroscope’s FEM simulation. This device has a significant advantage in scaling, while its output is in a competitive range among existing commercial angular rate sensors. The FEM simulations in COMSOL Multiphysics (COMSOL) allow to measure the angular rate sensitivity and perform further design optimization. Ultimately, this research shows the potential of the AlN sidewall structures in MEMS gyroscopes by optimizing the angular rate sensitivity in the range of [-64.64] degrees per second (dps) with the peak value of 1 mV/dps. ; Peer reviewed