People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bockowski, Michal
Institute of High Pressure Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024History matters for glass structure and mechanical properties
- 2023Evolution of the Growth Mode and Its Consequences during Bulk Crystallization of GaNcitations
- 2022Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteriescitations
- 2022Thermal conduction in a densified oxide glasscitations
- 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamicscitations
- 2021Vibrational disorder and densification-induced homogenization of local elasticity in silicate glassescitations
- 2021Thermal conductivity of densified borosilicate glassescitations
- 2021Indentation Response of Calcium Aluminoborosilicate Glasses Subjected to Humid Aging and Hot Compressioncitations
- 2021Volume relaxation in a borosilicate glass hot compressed by three different methodscitations
- 2020Composition and pressure effects on the structure, elastic properties and hardness of aluminoborosilicate glasscitations
- 2020Achieving ultrahigh crack resistance in glass through humid agingcitations
- 2020Volume relaxation in a borosilicate glass hot compressed by three different methodscitations
- 2019Luminescence behaviour of Eu 3+ in hot-compressed silicate glassescitations
- 2019Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glassescitations
- 2019(Invited) Advances in Ion Implantation of GaN and AlN
- 2018Deformation and cracking behavior of La2O3-doped oxide glasses with high Poisson's ratiocitations
- 2017Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
- 2017Foaming Glass Using High Pressure Sintering
- 2016Structure and mechanical properties of compressed sodium aluminosilicate glassescitations
- 2014Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass
Places of action
Organizations | Location | People |
---|
article
Thermal conduction in a densified oxide glass
Abstract
Thermal conductivity is an important property of oxide glasses, but its structural origins remain largely unknown. Here, we provide detailed modal information on thermal conductivity in a calcium aluminosilicate glass by relying on recent advances in lattice dynamics methods. We probe various structural features using molecular dynamics simulations by densifying the glass at pressures up to 100 GPa and studying the vibrational, mechanical, and thermal properties. We demonstrate good agreement between these simulations and complementary experiments, both of which indicate significant pressure-induced alteration of mechanical moduli, vibrational density of states, boson peak behavior, and thermal conductivity. We also find an intriguing correlation between the boson peak frequency and the total thermal conductivity in both the current glass series and a lithium borate glass series reported in literature. This correlation scales with the Debye frequency, suggesting that both parameters are associated with the transformation of the elastic medium under pressure.