People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chandar, N. Krishna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Thermal decomposition derived nano molybdenum nitride for robust counter electrode in dye-sensitized solar cells
Abstract
<p>The unique category of transition metal nitrides has an immense scope as an electron-driven catalyst in redox reactions. However, synthesizing metal nitrides without contamination is very challenging. The residues present in the catalyst might affect catalytic activity. This work reports a simple synthesis of contamination-free nanoscale molybdenum nitride (Mo<sub>2</sub>N) powder by integrated wet chemical and thermal decomposition techniques at 800 ̊°C. Systematic structural and morphological studies were done, which shows the spherical shape of γ -Mo<sub>2</sub>N nanoparticles. Electrochemical and photovoltaic characteristics were studied using cyclic voltammetry, electrochemical impedance spectroscopy (EIS), Tafel polarization and J–V characteristics. As a result of high electrolyte diffusivity, less charge transfer resistance, high electrochemical stability and catalytic activity, the nano Mo<sub>2</sub>N based DSSCs exhibits 5.3 % efficiency, which is comparable to Pt-based device (6.4 %) fabricated under the similar condition that is 83.7 % of the performance offered by an expensive counter electrode. This simple synthesis method could enable low-cost mass production of Mo<sub>2</sub>N nanoparticles as counter electrodes in DSSC. The developed counter electrodes may be a suitable alternative for stable, efficient and low-cost DSSCs.</p>