People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Naskar, Susmita
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Nonlinear stability of curved multi-phase composite panels: influence of agglomeration in randomly distributed carbon nanotubes with non-uniform in-plane loadscitations
- 2023Data-driven multiscale modeling and robust optimization of composite structure with uncertainty quantificationcitations
- 2023Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass - A strength performance and sustainability analysiscitations
- 2023Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass - A strength performance and sustainability analysiscitations
- 2023Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysiscitations
- 2023Multilevel fully integrated electromechanical property modulation of functionally graded graphene‐reinforced piezoelectric actuators: coupled effect of poling orientationcitations
- 2023Sustainable metal-organic framework co-engineered glass fiber separators for safer and longer cycle life of Li-S batteriescitations
- 2023On characterizing the viscoelastic electromechanical responses of functionally graded graphene-reinforced piezoelectric laminated compositescitations
- 2023Viscoelastic free vibration analysis of in-plane functionally graded orthotropic plates integrated with piezoelectric sensors: Time-dependent 3D analytical solutionscitations
- 2023Programmed Out-of-Plane curvature to enhance multimodal stiffness of bending-dominated composite latticescitations
- 2023Effective elastic moduli of space-filled multi-material composite latticescitations
- 2023Micro scratch behavior study of titanium dioxide and graphene nanoplatelets reinforced polymer nanocomposites
- 2022Compound influence of surface and flexoelectric effects on static bending response of hybrid composite nanorodcitations
- 2021Analytical Solution for Static and Dynamic Analysis of Graphene-Based Hybrid Flexoelectric Nanostructurescitations
- 2021Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTscitations
- 2020Stochastic Oblique Impact on Composite Laminates: A Concise Review and Characterization of the Essence of Hybrid Machine Learning Algorithmscitations
- 2019Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced compositescitations
- 2018Effect of delamination on the stochastic natural frequencies of composite laminatescitations
- 2013Investigation into metal wire based variant of EMI technique for structural health monitoring
Places of action
Organizations | Location | People |
---|
article
Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs
Abstract
The utility of carbon nanotubes as the reinforcement agents in polymer and metal matrix composites has opened up a new avenue in the development of novel composite materials with exceptional strength and stiffness to weight ratios. Such exploitation of superior mechanical properties of carbon nanotubes depends on their inherent irregularities and structural integration. The nanotubular structures of carbon are prone to topological defects and heteroatom dopants due to the inevitable complexities in nano-synthesis. The objective of this article is to quantify the compound influence of such inherent structural irregularities (such as single vacancy defects and nanopores) and foreign atom inclusions (such as nitrogen and boron atoms) on the mechanical characteristics (like constitutive relation, fracture strength, failure strain and Young's moduli) of single-walled carbon nanotubes (SWCNT) under various multi-physical influences (such as temperature, strain rate, diameter and chirality) based on molecular dynamics (MD) simulations. The current investigation also includes a detailed analysis on the variation in mechanical characteristics of CNTs under different spatial distributions of defects and doping.