People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cox, Sophie C.
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials
- 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processescitations
- 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processescitations
- 2022Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4Vcitations
- 2022Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repaircitations
- 2022The influence of thermal oxidation on the microstructure, fatigue properties, tribological and in vitro behaviour of laser powder bed fusion manufactured Ti-34 Nb-13Ta-5Zr-0.2O alloycitations
- 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusioncitations
- 2022Photocurable antimicrobial silk-based hydrogels for corneal repaircitations
- 2021Surface finish of additively manufactured metalscitations
- 2021Biofilm viability checkercitations
- 2020Optimizing the antimicrobial performance of metallic glass composites through surface texturingcitations
- 2020Selective laser melting of Ti-6Al-4V: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applicationscitations
- 2020Selective laser melting of ti-6al-4vcitations
- 2019Dynamic viscoelastic characterisation of human osteochondral tissuecitations
- 2018Formulation and viscoelasticity of mineralised hydrogels for use in bone-cartilage interfacial reconstructioncitations
- 2018The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral corescitations
- 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channelscitations
- 2016Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implantscitations
Places of action
Organizations | Location | People |
---|
article
Optimizing the antimicrobial performance of metallic glass composites through surface texturing
Abstract
<p>In the present work, we analyse the influence of laser texturing on the physicochemical and bactericidal properties of Cu<sub>55</sub>Zr<sub>40</sub>Al<sub>5</sub> Bulk Metallic Glass Composite (BMGC) to develop novel antimicrobial touch surfaces. Laser ablation was employed to increase the average roughness of BMGC samples from 0.08 ± 0.02 μm to 3.07 ± 0.96 μm using a maximum laser fluence of 2.82 J/cm<sup>2</sup>. This treatment also influenced surface chemistry causing the formation of CuO, CuO<sub>2</sub>, ZrO<sub>2</sub>, more prominent as the laser fluence was increased. Alongside chemical and topographic changes, the initial contact angle of the as-cast sample was found to increase from 85.81° to angles between 105.72° and 126.17° after texturing. The influence of these modifications on the antimicrobial performance of all rapidly solidified alloys was studied with Escherichia coli K12 modified to drive lux expression. Luminescence measurements revealed a reduction in bacterial growth as the laser fluence applied was risen. This increase in bactericidal effect as laser fluence rose was corroborated with recovery tests, which showed an increase in log reduction of E. coli K12 from 1.10 (for as-cast sample) to 2.16 (textured at 2.82 J/cm<sup>2</sup>) after 4 h of contact. Variations in bacterial morphology were observed with SEM imaging, specifically, a length increase of E. coli cells from 2 μm up to 20 μm could be observed in cells deposited on the textured surfaces. Deposited bacteria on laser treated samples revealed loss of membrane integrity, which along the aforementioned morphological changes suggest both external and DNA damage in all ablated samples. These findings reveal the possibility of tailoring the antimicrobial behaviour of BMGCs through laser texturing, which could be used as novel touch surfaces to tackle nosocomial infections along antibiotic resistance.</p>