People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zreiqat, Hala
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesiscitations
- 2024Engineering antibacterial bioceramicscitations
- 2023Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submissioncitations
- 2023Discovering an unknown territory using atom probe tomographycitations
- 2021Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regenerationcitations
- 2021Personalized Baghdadite scaffoldscitations
- 2021Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regenerationcitations
- 2021Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineeringcitations
- 2020On design for additive manufacturing (DAM) parameter and its effects on biomechanical properties of 3D printed ceramic scaffoldscitations
- 2016Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiaecitations
- 2016Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defectscitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theorycitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds:A unifying approach based on ultrasonics, nanoindentation, and homogenization theory
- 2014Micro-elasticity of porous ceramic baghdadite
- 2010The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL compositescitations
- 2009The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) filmscitations
Places of action
Organizations | Location | People |
---|
article
On design for additive manufacturing (DAM) parameter and its effects on biomechanical properties of 3D printed ceramic scaffolds
Abstract
iological and mechanical functions are sometimes two conflicting characteristics in bone tissue scaffolds, which necessitates a trade-off between these two properties in load-bearing applications. In this article, a systematic computational analysis was performed to investigate the effects of controllable fabrication factors (e.g. Design for Additive Manufacturing (DAM) Parameter) on compressive strength and permeability of ceramic scaffolds fabricated by robocasting technique, followed by a study on multiobjective optimization to determine the optimal structural parameters. To evaluate the compressive strength of scaffolds, the eXtended Finite Element Method (XFEM) was adopted to model fracture behavior in the scaffolds. Computational Fluid Dynamics (CFD) simulations were also conducted to analyze the permeability of the scaffold structures to quantify their biotransport capacity. Furthermore, experimental compression tests and fluid flow tests were conducted for some representative scaffolds to demonstrate the effectiveness of both XFEM and CFD simulations. The computational results indicated that the anisotropic degree of permeability could be controlled by adjusting particular geometric parameters during design and fabrication process, thereby enabling desirable directional permeability in each of longitudinal and transverse directions. Moreover, the XFEM results demonstrated that compressive strength of the scaffolds can be improved by at least 70 % while the porosity is kept unchanged, which is of considerable implication to design of robocast ceramic scaffolds for weight-bearing tissue engineering.