People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
A., Ahmad Ramazani S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid mediacitations
- 2021Thermal Degradation Kinetics and Modeling Study of Ultra High Molecular Weight Polyethylene (UHMWP)/Graphene Nanocompositecitations
- 2019Mechanical, rheological and oxygen barrier properties of ethylene vinyl acetate/diamond nanocomposites for packaging applicationscitations
- 2019In-situ polymerization of UHMWPE using bi-supported Ziegler-Natta catalyst of MoS2 Oxide/MgCl2 (Ethoxide type)/TiCl4/TiBA
- 2018In-situ preparation and characterization of ultra-high molecular weight polyethylene/diamond nanocomposites using Bi-supported Ziegler-Natta catalystcitations
- 2016Preparation and investigation of tribological properties of ultra-high molecular weight polyethylene (UHMWPE)/graphene oxidecitations
- 2015Effects of nano graphene oxide as support on the product properties and performance of Ziegler–Natta catalyst in production of UHMWPEcitations
- 2015LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability propertiescitations
- 2015Investigation of thermomechanical properties of UHMWPE/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
In-situ preparation and characterization of ultra-high molecular weight polyethylene/diamond nanocomposites using Bi-supported Ziegler-Natta catalyst
Abstract
In this study, reinforcement of ultra-high molecular weight polyethylene (UHMWPE) was investigated using the sol-gel surface modified diamond nanoparticles (NDs). Nanocomposite samples were synthesized via in-situ polymerization using bi-supported Ziegler-Natta catalyst. Fourier transform infrared spectroscopy, thermogravimetric analysis and contact angle measurements proved the proper silanization (∼1.9%) of NDs. Characterization of the catalysts revealed decrease in the activity of catalysts in presence of NDs which were responsible for the lower average molecular weight of the samples. Field emission scanning electron microscopy revealed an improved dispersion of the modified NDs in UHMWPE matrix by silanization. The incorporation of 2 wt.% unmodified and modified NDs enhanced the storage modulus (≤106% and ≤124%) and tensile strength (≤33% and ≤86%), respectively. Also, improvement in shore D and scratch hardness strength can be achieved in presence of NDs. Furthermore, tribological properties of the samples were investigated and discussed accordingly.