People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, S. Ravi P.
University of Surrey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2021Solvent Engineering as a Vehicle for High Quality Thin Films of Perovskites and Their Device Fabricationcitations
- 2021A synergistic Cs2CO3 ETL treatment to incorporate Cs cation into perovskite solar cells via two-step scalable fabricationcitations
- 2020Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobilitycitations
- 2020Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocompositescitations
- 2020Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocomposites.citations
- 2019X-ray micro-computed tomography as a non-destructive tool for imaging the uptake of metal nanoparticles by graphene-based 3D carbon structurescitations
- 2018Physicochemical characterisation of reduced graphene oxide for conductive thin filmscitations
- 2016Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizingcitations
- 2016Achieving 6.7% Efficiency in P3HT/Indene‐C70 Bisadduct Solar Cells through the Control of Vertical Volume Fraction Distribution and Optimized Regio‐Isomer Ratioscitations
- 2016Using Molecular Simulation to Explore Unusually Low Moisture Uptake in Amine-Cured Epoxy Carbon Fiber Reinforced Nanocomposites
- 2015Dramatic reductions in water uptake observed in novel POSS nanocomposites based on anhydride-cured epoxy matrix resinscitations
- 2014Towards the rational design of polymers using molecular simulation:Predicting the effect of cure schedule on thermo-mechanical properties for a cycloaliphatic amine-cured epoxy resincitations
- 2014Hybrid Graphene-Metal Oxide Solution Processed Electron Transport Layers for Large Area High-Performance Organic Photovoltaicscitations
- 2014Towards the rational design of polymers using molecular simulationcitations
- 2013Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaicscitations
- 2013Organic solar cells with plasmonic layers formed by laser nanofabricationcitations
- 2006Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis routecitations
Places of action
Organizations | Location | People |
---|
article
Dramatic reductions in water uptake observed in novel POSS nanocomposites based on anhydride-cured epoxy matrix resins
Abstract
A methylnadic anhydride-cured diglycidylether of bisphenol A, is prepared and characterised and a mono-epoxy POSS reagent added (0.5–4 wt-%) to produce a series of nanocomposites. Two reaction mechanisms are observed involving esterification at lower temperatures (60–180 °C) and etherification at temperatures above 180 °C. Using the Ozawa and Kissinger methods, the activation energy for the first reaction was found to be 87–90 kJ/mol and 122–124 kJ/mol for the second reaction. Incorporation of POSS into the epoxy-anhydride network increases the T g and cross-link density, indicating a more rigid network, but the values do not follow a trend based solely on POSS content. The char yield increases with POSS content with very little change in the degradation temperature. Incorporation of POSS (1 wt-%) can reduce the moisture uptake in the cured resin by ∼25% at 75% relative humidity. This is accompanied by a lower impact on glass transition temperature: the T g is reduced by 10 K at saturation, compared with 31 K for the unmodified epoxy.