People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zreiqat, Hala
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesiscitations
- 2024Engineering antibacterial bioceramicscitations
- 2023Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submissioncitations
- 2023Discovering an unknown territory using atom probe tomographycitations
- 2021Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regenerationcitations
- 2021Personalized Baghdadite scaffoldscitations
- 2021Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regenerationcitations
- 2021Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineeringcitations
- 2020On design for additive manufacturing (DAM) parameter and its effects on biomechanical properties of 3D printed ceramic scaffoldscitations
- 2016Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiaecitations
- 2016Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defectscitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theorycitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds:A unifying approach based on ultrasonics, nanoindentation, and homogenization theory
- 2014Micro-elasticity of porous ceramic baghdadite
- 2010The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL compositescitations
- 2009The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) filmscitations
Places of action
Organizations | Location | People |
---|
article
Engineering antibacterial bioceramics
Abstract
<p>The urgency to address skeletal abnormalities and diseases through innovative approaches has led to a significant interdisciplinary convergence of engineering, 3D printing, and design in developing individualised bioceramic bioscaffolds. This review explores into the recent advancements and future trajectory of non-antibiotic antibacterial bioceramics in bone tissue engineering, an importance given the escalating challenges of orthopaedic infections, antibiotic resistance, and emergent pathogens. Initially, the review provides an in-depth exploration of the complex interactions among bacteria, immune cells, and bioceramics in clinical contexts, highlighting the multifaceted nature of infection dynamics, including protein adsorption, immunological responses, bacterial adherence, and endotoxin release. Then, focus on the next-generation bioceramics designed to offer multifunctionality, especially in delivering antibacterial properties independent of traditional antibiotics. A key highlight of this study is the exploration of smart antibacterial bioceramics, marking a revolutionary stride in medical implant technology. The review also aims to guide the ongoing development and clinical adoption of bioceramic materials, focusing on their dual capabilities in promoting bone regeneration and exhibiting antibacterial properties. These next-generation bioceramics represent a paradigm shift in medical implant technology, offering multifunctional benefits that transcend traditional approaches.</p>